Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 595(7866): 278-282, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098567

RESUMEN

Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization1-3. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies4. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Camélidos del Nuevo Mundo/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Sistemas CRISPR-Cas , Camélidos del Nuevo Mundo/genética , Femenino , Edición Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/aislamiento & purificación , Hipermutación Somática de Inmunoglobulina/genética
2.
Cell Rep ; 35(2): 108977, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852840

RESUMEN

Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , ADN Superhelicoidal/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Proto-Oncogénicas c-fos/genética , ARN Polimerasa II/genética , Transcripción Genética , Línea Celular Transformada , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Polimerasa II/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/enzimología , Tiobarbitúricos/farmacología , Inhibidores de Topoisomerasa II/farmacología
3.
bioRxiv ; 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33688659

RESUMEN

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 2 million deaths worldwide. Multiple vaccines have been deployed to date, but the continual evolution of the viral receptor-binding domain (RBD) has recently challenged their efficacy. In particular, SARS-CoV-2 variants originating in the U.K. (B.1.1.7), South Africa (B.1.351) and New York (B.1.526) have reduced neutralization activity from convalescent sera and compromised the efficacy of antibody cocktails that received emergency use authorization. Whereas vaccines can be updated periodically to account for emerging variants, complementary strategies are urgently needed to avert viral escape. One potential alternative is the use of camelid VHHs (also known as nanobodies), which due to their small size can recognize protein crevices that are inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and "nanomice" we engineered to produce VHHs cloned from alpacas, dromedaries and camels. Through binding assays and cryo-electron microscopy, we identified two sets of highly neutralizing nanobodies. The first group expresses VHHs that circumvent RBD antigenic drift by recognizing a region outside the ACE2-binding site that is conserved in coronaviruses but is not typically targeted by monoclonal antibodies. The second group is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize pseudoviruses carrying the E484K or N501Y substitutions. Notably however, they do neutralize the RBD variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2. These findings demonstrate that multivalent nanobodies overcome SARS-CoV-2 variant mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.

4.
Nat Commun ; 12(1): 1355, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649303

RESUMEN

The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions.


Asunto(s)
Secuencia Conservada , Mamíferos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Animales , Línea Celular Tumoral , Enfermedad/genética , Complejo Mediador/ultraestructura , Ratones , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Nature ; 592(7855): 616-622, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33567448

RESUMEN

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/genética , Microscopía por Crioelectrón , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/ultraestructura , Femenino , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Memoria Inmunológica/inmunología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Vacunas de ARNm
6.
bioRxiv ; 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33501451

RESUMEN

To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease 2019 (COVID-19) including two novel mRNA-based vaccines 1,2 . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known 3-6 . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S) and receptor binding domain (RBD) binding titers 3,5,6 . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection 7,8 . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.

7.
Science ; 357(6358): 1412-1416, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28912134

RESUMEN

Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Aminoaciltransferasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , ADN/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Etopósido/farmacología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Inhibidores de Topoisomerasa II/farmacología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Nat Commun ; 8: 14758, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317875

RESUMEN

Mutations in chromatin modifier genes are frequently associated with neurodevelopmental diseases. We herein demonstrate that the chromodomain helicase DNA-binding protein 7 (Chd7), frequently associated with CHARGE syndrome, is indispensable for normal cerebellar development. Genetic inactivation of Chd7 in cerebellar granule neuron progenitors leads to cerebellar hypoplasia in mice, due to the impairment of granule neuron differentiation, induction of apoptosis and abnormal localization of Purkinje cells, which closely recapitulates known clinical features in the cerebella of CHARGE patients. Combinatory molecular analyses reveal that Chd7 is required for the maintenance of open chromatin and thus activation of genes essential for granule neuron differentiation. We further demonstrate that both Chd7 and Top2b are necessary for the transcription of a set of long neuronal genes in cerebellar granule neurons. Altogether, our comprehensive analyses reveal a mechanism with chromatin remodellers governing brain development via controlling a core transcriptional programme for cell-specific differentiation.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Humanos , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología
9.
Nat Commun ; 5: 3347, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24572510

RESUMEN

Ataxia telangiectasia is caused by mutations in ATM and represents a paradigm for cancer predisposition and neurodegenerative syndromes linked to deficiencies in the DNA-damage response. The role of ATM as a key regulator of signalling following DNA double-strand breaks (DSBs) has been dissected in extraordinary detail, but the impact of this process on DSB repair still remains controversial. Here we develop novel genetic and molecular tools to modify the structure of DSB ends and demonstrate that ATM is indeed required for efficient and accurate DSB repair, preventing cell death and genome instability, but exclusively when the ends are irreversibly blocked. We therefore identify the nature of ATM involvement in DSB repair, presenting blocked DNA ends as a possible pathogenic trigger of ataxia telangiectasia and related disorders.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Western Blotting , Supervivencia Celular/genética , Células Cultivadas , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Modelos Genéticos , Hidrolasas Diéster Fosfóricas/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...