Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171482, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471584

RESUMEN

Soil mass balances are used to assess the risk of trace metals that are inadvertently applied with fertilizers into agroecosystems. The accuracy of such balances is limited by leaching rates, as they are difficult to measure. Here, we used monolith lysimeters to precisely determine Cd, Cu, and Zn leaching rates in 2021 and 2022. The large lysimeters (n = 12, 1 m diameter, 1.35 m depth) included one soil type (cambisol, weakly acidic) and distinct cropping systems with three experimental replicates. Stable isotope tracers were applied to determine the direct transfer of these trace metals from the soil surface into the seepage water. The annual leaching rates ranged from 0.04 to 0.30 for Cd, 2.65 to 11.7 for Cu, and 7.27 to 39.0 g (ha a)-1 for Zn. These leaching rates were up to four times higher in the year with several heavy rain periods compared to the dry year. Monthly resolved data revealed that distinct climatic conditions in combination with crop development have a strong impact on trace metal leaching rates. In contrast, fertilization strategy (e.g., conventional vs. organic) had a minor effect on leaching rates. Trace metal leaching rates were up to 10 times smaller than fertilizer inputs and had therefore a minor impact on soil mass balances. This was further confirmed with isotope source tracing that showed that only small fractions of Cd, Cu, and Zn were directly transferred from the soil surface to the leached seepage water within two years (< 0.07 %). A comparison with models that predict Cd leaching rates in the EU suggests that the models overestimate the Cd soil output with seepage water. Hence, monolith lysimeters can help to refine leaching models and thereby also soil mass balances that are used to assess the risk of trace metals inputs with fertilizers.

2.
Remote Sens (Basel) ; 13(12): 2404, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36082363

RESUMEN

Nitrogen (N) is one of the key nutrients supplied in agricultural production worldwide. Over-fertilization can have negative influences on the field and the regional level (e.g., agro-ecosystems). Remote sensing of the plant N of field crops presents a valuable tool for the monitoring of N flows in agro-ecosystems. Available data for validation of satellite-based remote sensing of N is scarce. Therefore, in this study, field spectrometer measurements were used to simulate data of the Sentinel-2 (S2) satellites developed for vegetation monitoring by the ESA. The prediction performance of normalized ratio indices (NRIs), random forest regression (RFR) and Gaussian processes regression (GPR) for plant-N-related traits was assessed on a diverse real-world dataset including multiple crops, field sites and years. The plant N traits included the mass-based N measure, N concentration in the biomass (Nconc), and an area-based N measure approximating the plant N uptake (NUP). Spectral indices such as normalized ratio indices (NRIs) performed well, but the RFR and GPR methods outperformed the NRIs. Key spectral bands for each trait were identified using the RFR variable importance measure and the Gaussian processes regression band analysis tool (GPR-BAT), highlighting the importance of the short-wave infrared (SWIR) region for estimation of plant Nconc-and to a lesser extent the NUP. The red edge (RE) region was also important. The GPR-BAT showed that five bands were sufficient for plant N trait and leaf area index (LAI) estimation and that a surplus of bands effectively reduced prediction performance. A global sensitivity analysis (GSA) was performed on all traits simultaneously, showing the dominance of the LAI in the mixed remote sensing signal. To delineate the plant-N-related traits from this signal, regional and/or national data collection campaigns producing large crop spectral libraries (CSL) are needed. An improved database will likely enable the mapping of N at the agro-ecosystem level or for use in precision farming by farmers in the future.

3.
Sci Total Environ ; 755(Pt 2): 143453, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33199000

RESUMEN

Phosphorus (P) management in agroecosystems is driven by opposing requirements in agronomy, ecology, and environmental protection. The widely used maintenance P fertilization strategy relies on critical concentrations of soil test P (STP), which should cause the lowest possible impact on the environment while still ensuring optimal yield. While both soil P availability and crop yields are fundamentally related to pedoclimatic conditions, little is known about the extent to which soil and climate variables control critical STP. The official P fertilization guidelines for arable crops in Switzerland are based on empirically derived critical concentrations for two soil test methods (H2O-CO2 and AAE10). To validate those values and evaluate their relation to pedoclimatic conditions, we established nonlinear multivariate multilevel yield response models fitted to long-term data from six sites. The Mitscherlich function proved most suitable out of three functions and model fit was significantly enhanced by taking the multilevel data structure into account. Yield response to STP was strongest for potato, intermediate for barley, and lowest for wheat and maize. Mean critical STP at 95% maximum yield ranged among crops from 0.15-0.58 mg kg-1 (H2O-CO2) and 0-36 mg kg-1 (AAE10). However, pedoclimatic conditions such as annual temperature or soil clay content had a large impact on critical STP, entailing changes of up to 0.9 mg kg-1 (H2O-CO2) and 80 mg kg-1 (AAE10). Critical STP for the AAE10 method was also affected by soil pH. Our findings suggest that the current Swiss fertilization guidelines overestimate actual crop P demand on average and that site conditions account for large parts of the variation in critical STP. We propose that site-specific fertilization recommendations could be improved on the basis of agro-climate classes in addition to soil information, which can help to counteract the accumulation of unutilized soil P by long-term P application.

4.
Front Plant Sci ; 11: 593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625216

RESUMEN

Understanding the interaction of plant growth with environmental conditions is crucial to increase the resilience of current cropping systems to a changing climate. Here, we investigate PhenoCams as a high-throughput approach for field phenotyping experiments to assess growth dynamics of many different genotypes simultaneously in high temporal (daily) resolution. First, we develop a method that extracts a daily phenological signal that is normalized for the different viewing geometries of the pixels within the images. Second, we investigate the extraction of the in season traits of early vigor, leaf area index (LAI), and senescence dynamic from images of a soybean (Glycine max) field phenotyping experiment and show that it is possible to rate early vigor, senescence dynamics, and track the LAI development between LAI 1 and 4.5. Third, we identify the start of green up, green peak, senescence peak, and end of senescence in the phenological signal. Fourth, we extract the timing of these points and show how this information can be used to assess the impact of phenology on harvest traits (yield, thousand kernel weight, and oil content). The results demonstrate that PhenoCams can track growth dynamics and fill the gap of high temporal monitoring in field phenotyping experiments.

5.
Front Plant Sci ; 11: 150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158459

RESUMEN

Canopy temperature (CT) has been related to water-use and yield formation in crops. However, constantly (e.g., sun illumination angle, ambient temperature) as well as rapidly (e.g., clouds) changing environmental conditions make it difficult to compare measurements taken even at short time intervals. This poses a great challenge for high-throughput field phenotyping (HTFP). The aim of this study was to i) set up a workflow for unmanned aerial vehicles (UAV) based HTFP of CT, ii) investigate different data processing procedures to combine information from multiple images into orthomosaics, iii) investigate the repeatability of the resulting CT by means of heritability, and iv) investigate the optimal timing for thermography measurements. Additionally, the approach was v) compared with other methods for HTFP of CT. The study was carried out in a winter wheat field trial with 354 genotypes planted in two replications in a temperate climate, where a UAV captured CT in a time series of 24 flights during 6 weeks of the grain-filling phase. Custom-made thermal ground control points enabled accurate georeferencing of the data. The generated thermal orthomosaics had a high spatial accuracy (mean ground sampling distance of 5.03 cm/pixel) and position accuracy [mean root-mean-square deviation (RMSE) = 4.79 cm] over all time points. An analysis on the impact of the measurement geometry revealed a gradient of apparent CT in parallel to the principle plane of the sun and a hotspot around nadir. Averaging information from all available images (and all measurement geometries) for an area of interest provided the best results by means of heritability. Correcting for spatial in-field heterogeneity as well as slight environmental changes during the measurements were performed with the R package SpATS. CT heritability ranged from 0.36 to 0.74. Highest heritability values were found in the early afternoon. Since senescence was found to influence the results, it is recommended to measure CT in wheat after flowering and before the onset of senescence. Overall, low-altitude and high-resolution remote sensing proved suitable to assess the CT of crop genotypes in a large number of small field plots as is required in crop breeding and variety testing experiments.

6.
Front Plant Sci ; 10: 344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967891

RESUMEN

Water limitation is one of the major factors reducing crop productivity worldwide. In order to develop efficient breeding strategies to improve drought tolerance, accurate methods to identify when a plant reduces growth as a consequence of water deficit have yet to be established. In perennial ryegrass (Lolium perenne L.), an important forage grass of the Poaceae family, leaf elongation is a key factor determining plant growth and hence forage yield. Although leaf elongation has been shown to be temperature-dependent under non-stress conditions, the impact of water limitation on leaf elongation in perennial ryegrass is poorly understood. We describe a method for quantifying tolerance to water deficit based on leaf elongation in relation to temperature and soil moisture in perennial ryegrass. With decreasing soil moisture, three growth response phases were identified: first, a "normal" phase where growth is mainly determined by temperature, second a "slow" phase where leaf elongation decreases proportionally to soil water potential and third an "arrest" phase where leaf growth terminates. A custom R function was able to quantify the points which demarcate these phases and can be used to describe the response of plants to water deficit. Applied to different perennial ryegrass genotypes, this function revealed significant genotypic variation in the response of leaf growth to temperature and soil moisture. Dynamic phenotyping of leaf elongation can be used as a tool to accurately quantify tolerance to water deficit in perennial ryegrass and to improve this trait by breeding. Moreover, the tools presented here are applicable to study the plant response to other stresses in species with linear, graminoid leaf morphology.

7.
Plant Methods ; 15: 13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30774703

RESUMEN

BACKGROUND: Recent advances in high throughput phenotyping have made it possible to collect large datasets following plant growth and development over time, and those in machine learning have made inferring phenotypic plant traits from such datasets possible. However, there remains a dirth of datasets following plant growth under stress conditions along with methods for inferring them using only remotely sensed data, especially under a combination of multiple stress factors such as drought, weeds and nutrient deficiency. Such stress factors and their combinations are commonly encountered during crop production and being able to accurately detect and treat such stress conditions in an automated and timely manner can provide a major boost to farm yields with minimal resource input. RESULTS: We present a generic framework for remote plant stress phenotyping that consists of a dataset with spatio-temporal-spectral data following sugarbeet crop growth under optimal, drought, low and surplus nitrogen fertilization, and weed stress conditions, along with a machine learning based methodology for systematically inferring these stress conditions from the remotely measured data. The dataset contains biweekly color images, infra-red stereo image pairs and hyperspectral camera images along with applied treatment parameters and environmental factors like temperature and humidity, collected over two months. We present a plant agnostic methodology for deriving plant trait indicators such as canopy cover, height, hyperspectral reflectance and vegetation indices along with a spectral 3D reconstruction of the plants from the raw data to serve as a benchmark. Additionally, we provide fresh and dry weight measurements for both the above (canopy) and below (beet) ground biomass at the end of the growing period to serve as indicators of expected yield. We further describe a data driven, machine learning based method to infer water, Nitrogen and weed stress using the derived plant trait indicators. We use the plant trait indicators to evaluate 8 different classification approaches from which the best classifier achieved a mean cross validation accuracy of ≈ 93, 76 and 83% for drought, nitrogen and weed stress severity classification respectively. We also show that our multi-modal approach significantly improves classifier performance over using any single modality. CONCLUSION: The presented framework and dataset can serve as a valuable reference for creating and comparing processing pipelines which extract plant trait indicators and infer prevalent stress factors from remote sensing data under a variety of environments and cropping conditions. These techniques can then be deployed on farm machinery or robots enabling automated, precise and timely corrective interventions for maximising yield.

8.
Front Plant Sci ; 10: 1749, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32047504

RESUMEN

The ability of a genotype to stay green affects the primary target traits grain yield (GY) and grain protein concentration (GPC) in wheat. High throughput methods to assess senescence dynamics in large field trials will allow for (i) indirect selection in early breeding generations, when yield cannot yet be accurately determined and (ii) mapping of the genomic regions controlling the trait. The aim of this study was to develop a robust method to assess senescence based on hyperspectral canopy reflectance. Measurements were taken in three years throughout the grain filling phase on >300 winter wheat varieties in the spectral range from 350 to 2500 nm using a spectroradiometer. We compared the potential of spectral indices (SI) and full-spectrum models to infer visually observed senescence dynamics from repeated reflectance measurements. Parameters describing the dynamics of senescence were used to predict GY and GPC and a feature selection algorithm was used to identify the most predictive features. The three-band plant senescence reflectance index (PSRI) approximated the visually observed senescence dynamics best, whereas full-spectrum models suffered from a strong year-specificity. Feature selection identified visual scorings as most predictive for GY, but also PSRI ranked among the most predictive features while adding additional spectral features had little effect. Visually scored delayed senescence was positively correlated with GY ranging from r = 0.173 in 2018 to r = 0.365 in 2016. It appears that visual scoring remains the gold standard to quantify leaf senescence in moderately large trials. However, using appropriate phenotyping platforms, the proposed index-based parameterization of the canopy reflectance dynamics offers the critical advantage of upscaling to very large breeding trials.

9.
Funct Plant Biol ; 46(3): 213-227, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-32172765

RESUMEN

To include within-canopy leaf acclimation responses to light and other resource gradients in photosynthesis modelling, it is imperative to understand the variation of leaf structural, biochemical and physiological traits from canopy top to bottom. In the present study, leaf photosynthetic traits for top and bottom canopy leaves, canopy structure and light profiles, were measured over one growing season for two contrasting crop types, winter barley (Hordeum vulgare L.) and rape seed (Brassica napus L.). With the exception of quantum yield, other traits such as maximum photosynthetic capacity (Amax), dark respiration, leaf nitrogen and chlorophyll contents, and leaf mass per area, showed consistently higher (P<0.05) values for top leaves throughout the growing season and for both crop types. Even though Amax was higher for top leaves, the bottom half of the canopy intercepted more light and thus contributed the most to total canopy photosynthesis up until senescence set in. Incorporating this knowledge into a simple top/bottom-leaf upscaling scheme, separating top and bottom leaves, resulted in a better match between estimated and measured total canopy photosynthesis, compared with a one-leaf upscaling scheme. Moreover, aggregating to daily and weekly temporal resolutions progressively increased the linearity of the leaf photosynthetic responses to light for top leaves.


Asunto(s)
Productos Agrícolas , Fotosíntesis , Aclimatación , Clorofila , Luz
10.
Plant Methods ; 13: 73, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28924448

RESUMEN

BACKGROUND: Phenotyping technologies are expected to provide predictive power for a range of applications in plant and crop sciences. Here, we use the disease pressure of Beet Cyst Nematodes (BCN) on sugar beet as an illustrative example to test the specific capabilities of different methods. Strong links between the above and belowground parts of sugar beet plants have made BCN suitable targets for use of non-destructive phenotyping methods. We compared the ability of visible light imaging, thermography and spectrometry to evaluate the effect of BCN on the growth of sugar beet plants. RESULTS: Two microplot experiments were sown with the nematode susceptible cultivar Aimanta and the nematode tolerant cultivar BlueFox under semi-field conditions. Visible imaging, thermal imaging and spectrometry were carried out on BCN infested and non-infested plants at different times during the plant development. Effects of a chemical nematicide were also evaluated using the three phenotyping methods. Leaf and beet biomass were measured at harvest. For both susceptible and tolerant cultivar, canopy area extracted from visible images was the earliest nematode stress indicator. Using such canopy area parameter, delay in leaf growth as well as benefit from a chemical nematicide could be detected already 15 days after sowing. Spectrometry was suitable to identify the stress even when the canopy reached full coverage. Thermography could only detect stress on the susceptible cultivar. Spectral Vegetation Indices related to canopy cover (NDVI and MCARI2) and chlorophyll content (CHLG) were correlated with the final yield (R = 0.69 on average for the susceptible cultivar) and the final nematode population in the soil (R = 0.78 on average for the susceptible cultivar). CONCLUSION: In this paper we compare the use of visible imaging, thermography and spectrometry over two cultivars and 2 years under outdoor conditions. The three different techniques have their specific strengths in identifying BCN symptoms according to the type of cultivars and the growth stages of the sugar beet plants. Early detection of nematicide benefit and high yield predictability using visible imaging and spectrometry suggests promising applications for agricultural research and precision agriculture.

11.
Plant Methods ; 12: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26834822

RESUMEN

BACKGROUND: Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. RESULTS: Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. CONCLUSIONS: The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and precision agriculture applications. In future studies, the TLS method can be readily applied to detect the effects of plant stresses such as drought, limited nutrient availability or compacted soil on different genotypes or on spatial variance in fields.

12.
Funct Plant Biol ; 44(1): 154-168, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480554

RESUMEN

Crop phenotyping is a major bottleneck in current plant research. Field-based high-throughput phenotyping platforms are an important prerequisite to advance crop breeding. We developed a cable-suspended field phenotyping platform covering an area of ~1ha. The system operates from 2 to 5m above the canopy, enabling a high image resolution. It can carry payloads of up to 12kg and can be operated under adverse weather conditions. This ensures regular measurements throughout the growing period even during cold, windy and moist conditions. Multiple sensors capture the reflectance spectrum, temperature, height or architecture of the canopy. Monitoring from early development to maturity at high temporal resolution allows the determination of dynamic traits and their correlation to environmental conditions throughout the entire season. We demonstrate the capabilities of the system with respect to monitoring canopy cover, canopy height and traits related to thermal and multi-spectral imaging by selected examples from winter wheat, maize and soybean. The system is discussed in the context of other, recently established field phenotyping approaches; such as ground-operating or aerial vehicles, which impose traffic on the field or require a higher distance to the canopy.

13.
Plant Methods ; 11: 9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793008

RESUMEN

BACKGROUND: Field-based high throughput phenotyping is a bottleneck for crop breeding research. We present a novel method for repeated remote phenotyping of maize genotypes using the Zeppelin NT aircraft as an experimental sensor platform. The system has the advantage of a low altitude and cruising speed compared to many drones or airplanes, thus enhancing image resolution while reducing blurring effects. Additionally there was no restriction in sensor weight. Using the platform, red, green and blue colour space (RGB), normalized difference vegetation index (NDVI) and thermal images were acquired throughout the growing season and compared with traits measured on the ground. Ground control points were used to co-register the images and to overlay them with a plot map. RESULTS: NDVI images were better suited than RGB images to segment plants from soil background leading to two separate traits: the canopy cover (CC) and its NDVI value (NDVIPlant). Remotely sensed CC correlated well with plant density, early vigour, leaf size, and radiation interception. NDVIPlant was less well related to ground truth data. However, it related well to the vigour rating, leaf area index (LAI) and leaf biomass around flowering and to very late senescence rating. Unexpectedly, NDVIPlant correlated negatively with chlorophyll meter measurements. This could be explained, at least partially, by methodical differences between the used devices and effects imposed by the population structure. Thermal images revealed information about the combination of radiation interception, early vigour, biomass, plant height and LAI. Based on repeatability values, we consider two row plots as best choice to balance between precision and available field space. However, for thermography, more than two rows improve the precision. CONCLUSIONS: We made important steps towards automated processing of remotely sensed data, and demonstrated the value of several procedural steps, facilitating the application in plant genetics and breeding. Important developments are: the ability to monitor throughout the season, robust image segmentation and the identification of individual plots in images from different sensor types at different dates. Remaining bottlenecks are: sufficient ground resolution, particularly for thermal imaging, as well as a deeper understanding of the relatedness of remotely sensed data and basic crop characteristics.

14.
Plant Methods ; 11: 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25767559

RESUMEN

Plant phenotyping refers to a quantitative description of the plant's anatomical, ontogenetical, physiological and biochemical properties. Today, rapid developments are taking place in the field of non-destructive, image-analysis -based phenotyping that allow for a characterization of plant traits in high-throughput. During the last decade, 'the field of image-based phenotyping has broadened its focus from the initial characterization of single-plant traits in controlled conditions towards 'real-life' applications of robust field techniques in plant plots and canopies. An important component of successful phenotyping approaches is the holistic characterization of plant performance that can be achieved with several methodologies, ranging from multispectral image analyses via thermographical analyses to growth measurements, also taking root phenotypes into account.

15.
PLoS One ; 8(9): e73234, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058464

RESUMEN

BACKGROUND: Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. METHODOLOGY/PRINCIPAL FINDINGS: We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. CONCLUSION/SIGNIFICANCE: Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.


Asunto(s)
Aumento de la Imagen/instrumentación , Fotograbar/instrumentación , Ranidae/anatomía & histología , Piel/anatomía & histología , Análisis Espectral/instrumentación , Animales , Color , Femenino , Masculino , Fotograbar/estadística & datos numéricos , Ranidae/clasificación , Análisis Espectral/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...