Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ind Eng Chem Res ; 63(2): 1055-1065, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38250710

RESUMEN

The rising energy demand for cooling and heating requires efficient and sustainable technologies. Vapor-compression systems represent the state of the art but suffer from downscaling limits and maintenance needs. These disadvantages may be overcome by recently proposed electrochemical processes. However, their potential has not been explored systematically. This work quantifies the thermodynamic potential of an indirect electrochemical cooling process that replaces the vapor compressor of a standard refrigeration cycle with an electrochemical cell. An equilibrium-based process model evaluates the process performance of a working fluid, depending on its composition and temperatures in the process. After screening an extensive database for possible working fluids, an electrochemical cooling process is analyzed and optimized for the coefficient of performance (COP) to operate between two heat reservoirs at 20 °C (heat source) and 35 °C (heat sink). The majority of the investigated working fluids yield smaller or similar efficiencies than vapor-compression refrigeration, with COPs between 3.0 and 4.0. However, 35 promising working fluids that achieve higher efficiencies are identified with a COP up to 9.63, corresponding to 49% of Carnot. These working fluids are worthy of further investigation as their use in the electrochemical cooling process possibly outperforms standard vapor-compression refrigeration.

2.
Eng Life Sci ; 19(11): 741-748, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32624967

RESUMEN

In the light of continuous improvement and optimization, recent experiments that the authors conducted give new insights into the applied evaluation method of Riegel et al. [1]: Thorough investigations of the previous results regarding the usage of the Lowry Assay showed discrepancies in the determination of the released amount of protein in the analysis solution. The accurate quantification of this parameter is crucial as it directly influences the calculation of the residual enzymatic activity. In concrete terms, this finding has a major impact on the presented and discussed results in the article "Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications" [1]. Thus, this commentary addresses the new insights concerning the applied evaluation method, explains necessary revisions and discusses new conclusions derived from the adjusted evaluation method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...