Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 700-714, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38295273

RESUMEN

Every 1.2 s, a diabetic foot ulcer is developed, and every 20 s, one amputation is carried out in diabetic patients. Monitoring and controlling protease activity have been considered as a strategy for more efficient management of diabetic and other chronic wounds. This study aimed to develop a casein-based dressing that, by its disappearance, provides information about the activity of proteases and simultaneously harnesses proteolytic activity. Casein films were fabricated by using an aqueous solution, and heat treatment was successfully deployed as a green and clean approach to confer hydrolytic stability. Our results showed that casein-based films' mechanical characteristics, water absorption, and proteolytic stability could be controlled by the length of the heat treatment, which proved to be a useful tool. An increase in the treatment duration from 30 min to 3 h led to toleration of 2.4 times higher stress, 2 times lower water uptake, and 3.4 times higher proteolytic stability at examined conditions. Selected casein-based structures responded to Bacillus sp. bacteria's protease (BSP) and human neutrophil elastase (HNE) as representatives of bacterial and nonbacterial proteases found in the wounds at 10 and 200 ng mL-1 levels, respectively. The hydrolysis was accompanied by a 36% reduction in proteolytic activity measured by using a casein-based universal protease activity assay. The released casein fragments could scavenge 90% of the examined radicals. In-vitro cell culture studies showed that the hydrolysates were not cytotoxic, and the casein-based film had a favorable interaction with fibroblast cells, indicating its potential as a scaffold in the case that proteolytic activity would not be to the extent that causes its rapid disintegration. In general, these findings hold promise for applying the developed casein-based structure for detecting proteolytic activity without the need for any equipment, kits, or expertise and, more importantly, in a highly economical manner. In the case that the proteolytic activity would not be severe, it could also serve as a substrate for cell adhesion and growth; this would aid in the healing process.


Asunto(s)
Caseínas , Pie Diabético , Humanos , Péptido Hidrolasas/metabolismo , Vendajes , Pie Diabético/terapia , Pie Diabético/diagnóstico , Agua
2.
Front Bioeng Biotechnol ; 11: 1152577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152648

RESUMEN

Cellulose is an appealing material for tissue engineering. In an attempt to overcome some obstacles with cellulose II cell scaffolding materials related to insufficient biomineralization, lack of micron-size porosity, and deficiency in surface charge, respective solutions have been proposed. These included covalent phosphorylation of different cellulose materials targeting relatively low degrees of substitution (DS 0.18-0.23) and processing these cellulose derivatives into scaffolding materials by a dissolution/coagulation approach employing the hitherto rarely used TBAF/DMSO/H2O system for cellulose dissolution. Here, we report bioactivity and preliminary hemocompatibility testing of dual-porous cellulose phosphate aerogels (contrasted with the phosphate-free reference) obtained via coagulation (water/ethanol), solvent exchange and scCO2 drying. Deposition of hydroxyapatite from simulated body fluid (7 days of immersion) revealed good bioactivity (1.5-2.2 mg Ca2+ per mg scaffold). Incubation of the scCO2-dried and rehydrated scaffolding materials in heparin anticoagulated human whole blood was conducted to study selected parameters of hemostasis (prothrombin F1+2 fragment, PF4, count of thrombocyte-leukocyte conjugates) and inflammatory response (C5a fragment, leukocyte activation marker CD11b). Adhesion of leukocytes on the surface of the incubated substrates was assessed by scanning electron and fluorescence microscopy (DAPI staining). The results suggest that phosphorylation at low DS does not increase platelet activation. However, a significant increase in platelet activation and thrombin formation was observed after a certain fraction of the negative surface charges had been compensated by Ca2+ ions. The combination of both phosphorylation and calcification turned out to be a potent means for controlling the inflammatory response, which was close to baseline level for some of the studied samples.

3.
ACS Appl Bio Mater ; 6(2): 543-551, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36745634

RESUMEN

Mesenchymal stem cells (MSCs) are the most prominent type of adult stem cells for clinical applications. Three-dimensional (3D) cultivation of MSCs in biomimetic hydrogels provides a more physiologically relevant cultivation microenvironment for in vitro testing and modeling, thus overcoming the limitations of traditional planar cultivation methods. Cellulose nanofibers are an excellent candidate biomaterial for synthesis of hydrogels for this application, due to their biocompatibility, tunable properties, availability, and low cost. Herein, we demonstrate the capacity of hydrogels prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized and subsequently individualized cellulose-nanofibrils to support physiologically relevant 3D in vitro cultivation of human MSCs at low solid contents (0.2-0.5 wt %). Our results show that MSCs can spread, proliferate, and migrate inside the cellulose hydrogels, while the metabolic activity and proliferative capacity of the cells as well as their morphological characteristics benefit more in the lower bulk cellulose concentration hydrogels.


Asunto(s)
Celulosa Oxidada , Células Madre Mesenquimatosas , Humanos , Hidrogeles , Materiales Biocompatibles , Celulosa
4.
Materials (Basel) ; 15(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36431355

RESUMEN

All-lignin coating formulations were prepared while combining water-soluble cationic kraft lignin (quaternized LignoBoost®, CL) and anionic lignosulphonate (LS). The electrostatic attraction between positively charged CL and negatively charged LS led to the formation of insoluble self-organized macromolecule aggregates that align to films. The structures of the formed layers were evaluated by atomic force microscopy (AFM), firstly on glass lamina using dip-coating deposition and then on handsheets and industrial uncoated paper using roll-to-roll coating in a layer-by-layer mode. Coated samples were also characterized by optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (SEM/EDS), and contact angle measurements. It was suggested that the structure of all-lignin aggregates is the result of the interaction of amphiphilic water-soluble lignin molecules leading to their specifically ordered mutual arrangement depending on the order and the mode of their application on the surface. The all-lignin coating of cellulosic fiber imparts lower air permeability and lower free surface energy to paper, mainly due to a decrease in surface polarity, thus promoting the paper's hydrophobic properties. Moderate loading of lignin coating formulations (5-6 g m-2) did not affect the mechanical strength of the paper.

5.
Ind Eng Chem Res ; 61(10): 3503-3515, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35309502

RESUMEN

Current changes toward a more biobased economy have recently created tremendous renewed interest in using lignin as a valuable source for chemicals and materials. Here, we present a facile cationization approach aiming to impart kraft lignin water-solubility, with similar good features as lignosulfonates. Eucalyptus globulus kraft lignin obtained from a paper mill black liquor by applying the LignoBoost process was used as the substrate. Its reaction with 3-chloro-2-hydroxypropyl-trimethylammonium chloride (CHPTAC) in an aqueous alkaline medium was studied to assess the impact of different reaction conditions (temperature, time, educt concentration, molar CHPTAC-to-lignin ratio) on the degree of cationization. It has been shown that at pH 13, 10 wt % lignin content, 70 °C, and 3 h reaction time, a CHPTAC-to-lignin minimum molar ratio of 1.3 is required to obtain fully water-soluble products. Elemental analysis (4.2% N), size-exclusion chromatography (M w 2180 Da), and quantitative 13C NMR spectroscopy of the product obtained at this limit reactant concentration suggest introduction of 1.2 quaternary ammonium groups per C9 unit and substitution of 75% of the initially available phenolic OH groups. The possible contribution of benzylic hydroxyls to the introduction of quaternary ammonium moieties through a quinone methide mechanism has been proposed. Since both molecular characteristics and degree of substitution, and hence solubility or count of surface charge, of colloidal particles can be adjusted within a wide range, cationic kraft lignins are promising materials for a wide range of applications, as exemplarily demonstrated for flocculation of anionic dyes.

6.
Polymers (Basel) ; 14(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054664

RESUMEN

This study investigates the effect of the enzymatic polymerization of lignosulfonate for the formulation of a lignosulfonate-based adhesive. For this, beech lamellas were glued together and tested according to the EN 302-1 standard. The results showed that the laccase-polymerized lignosulfonate-based wood adhesives (LS-p) had similar mechanical properties as a standard carpenter's glue (PVAc-based D3 class white glue), as no significant difference in tensile shear strength between these two adhesive types was found. However, carpenter's glue showed almost 100% wood failure, while with the lignosulfonate-based wood glue, the samples failed, mainly in the glueline. Pre-polymerization of LS-p is the most critical factor to achieve the required viscosity, which is also connected to the wetting properties and the resulting tensile shear strength. The longer the pre-polymerization, the higher the viscosity of the LS-p adhesive, with the tensile shear strength reaching a plateau. The presented data show the potential of using enzymatically pre-polymerized lignosulfonate as a well-performing wood adhesive. Further development and optimization of the pre-polymerization process is required, which is also important to push towards upscaling and practical applications.

7.
Materials (Basel) ; 14(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576349

RESUMEN

Coating of steel is a frequently applied approach to increase the resistance of moving machine parts towards abrasion, surface oxidation, and corrosion. Here, we show that plating circular saw blades with certain metals can help to reduce the electrical charging of wood dust during cutting, which has significant implications for occupational safety, healthcare, and lifetime of filter systems. With the example of beech wood planks, machine net energy consumption EV (J cm-3) and cumulated field strength E→V (kV m-4) as caused by electrically charged particles were compared for cutting of 10- and 20-mm deep grooves (800 mm length) using saw blades of different toothing (24, 60 teeth) and surface coating (Cu, Ag, and Cr). To ensure uniform feed per tooth (fz = 0.063 mm), saw blades were operated at different rotation speeds (4000 vs. 1600 rpm). The results demonstrate that the extent of electrostatic sawdust charging can be manipulated to a certain extent by the type of saw blade plating. Coating with chromium turned out to be most effective in shifting the electrostatic charge of the wood particles towards neutralization. Lowering of rotation speed using circular saw blades of higher toothing was an additional measure significantly reducing electrostatic charging of wood dust. Hence, cutting with a chrome-coated blade with 60 teeth can be specifically recommended as the reduction of electrical saw dust charging is not associated with higher machine power consumption.

8.
Polymers (Basel) ; 13(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669181

RESUMEN

The imaging of non-conducting materials by scanning electron microscopy (SEM) is most often performed after depositing few nanometers thick conductive layers on the samples. It is shown in this work, that even a 5 nm thick sputtered gold layer can dramatically alter the morphology and the surface structure of many different types of aerogels. Silica, polyimide, polyamide, calcium-alginate and cellulose aerogels were imaged in their pristine forms and after gold sputtering utilizing low voltage scanning electron microscopy (LVSEM) in order to reduce charging effects. The morphological features seen in the SEM images of the pristine samples are in excellent agreement with the structural parameters of the aerogels measured by nitrogen adsorption-desorption porosimetry. In contrast, the morphologies of the sputter coated samples are significantly distorted and feature nanostructured gold. These findings point out that extra care should be taken in order to ensure that gold sputtering does not cause morphological artifacts. Otherwise, the application of low voltage scanning electron microscopy even yields high resolution images of pristine non-conducting aerogels.

9.
Polymers (Basel) ; 12(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255498

RESUMEN

According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".

10.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272769

RESUMEN

Biopolymer aerogels of appropriate open-porous morphology, nanotopology, surface chemistry, and mechanical properties can be promising cell scaffolding materials. Here, we report a facile approach towards the preparation of cellulose phosphate aerogels from two types of cellulosic source materials. Since high degrees of phosphorylation would afford water-soluble products inappropriate for cell scaffolding, products of low DSP (ca. 0.2) were prepared by a heterogeneous approach. Aiming at both i) full preservation of chemical integrity of cellulose during dissolution and ii) utilization of specific phase separation mechanisms upon coagulation of cellulose, TBAF·H2O/DMSO was employed as a non-derivatizing solvent. Sequential dissolution of cellulose phosphates, casting, coagulation, solvent exchange, and scCO2 drying afforded lightweight, nano-porous aerogels. Compared to their non-derivatized counterparts, cellulose phosphate aerogels are less sensitive towards shrinking during solvent exchange. This is presumably due to electrostatic repulsion and translates into faster scCO2 drying. The low DSP values have no negative impact on pore size distribution, specific surface (SBET ≤ 310 m2 g-1), porosity (Π 95.5-97 vol.%), or stiffness (Eρ ≤ 211 MPa cm3 g-1). Considering the sterilization capabilities of scCO2, existing templating opportunities to afford dual-porous scaffolds and the good hemocompatibility of phosphorylated cellulose, TBAF·H2O/DMSO can be regarded a promising solvent system for the manufacture of cell scaffolding materials.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Dimetilsulfóxido/química , Geles/química , Compuestos de Amonio Cuaternario/química , Agua/química , Biopolímeros/química , Nanoestructuras/química , Fosfatos/química , Porosidad , Solventes/química
11.
Soft Matter ; 15(41): 8372-8380, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31588953

RESUMEN

Cellulose II aerogels are a highly porous class of biobased ultra-light-weight materials. They consist of interlinked networks of loosely aggregated cellulose fibrils. The latter typically have random orientation due to spontaneous phase separation triggered by addition of antisolvent to moleculardisperse cellulose solutions. Deceleration of phase separation has been recently proposed as a novel approach towards aerogels featuring preferred cellulose orientation. Here, we investigate the mechanical response of such oriented cellulose aerogels towards load up to 80% compression. Stress-strain curves were recorded and in situ small angle X-ray scattering (SAXS) was performed during compression test to obtain information about the structural alterations of the aerogel fibril networks on the nano-scale related to deformation. Using SAXS in addition, structural changes can be followed in much more detail than by recording stress-strain curves alone. Buckling and coalescence of fibers and a change in fibril orientation can be related to certain regimes in the stress-strain curve. If the loading axis is oriented parallel to the network orientation the aerogels show higher resilience towards the compression.


Asunto(s)
Celulosa/química , Geles/química , Nanoestructuras/química , Anisotropía , Cristalización , Guanidinas/química , Conformación Molecular , Transición de Fase , Porosidad , Presión , Solventes/química , Relación Estructura-Actividad
12.
Carbohydr Polym ; 226: 115306, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582054

RESUMEN

This study investigates periodate-chlorite oxidation as a pretreatment to tailor the surface charge density of cellulose nanofibers employed in open-porous anisotropic hydrogel membranes for transdermal drug delivery. The obtained materials feature high specific surface (≤500 m2 g-1, BET), small average pore size (ca. 40 nm) and tunable surface charge, which are key properties for adsorption and slow release of charged drug molecules. Loading of the non-steroidal anti-inflammatory drug (NSAID) piroxicam (PRX) into the membranes confirmed that the extent of loading is governed by surface charge density and carboxylate group content, respectively, which can be controlled by the oxidation procedure within the range of 0.74-2.00 mmol g-1. Prolonged release of PRX over several hours was observed upon exposure of the loaded membranes to simulated human skin fluid demonstrating the applicability as drug delivery patches.


Asunto(s)
Celulosa/química , Portadores de Fármacos/química , Hidrogeles/química , Nanofibras/química , Piroxicam/administración & dosificación , Administración Cutánea , Adsorción , Liberación de Fármacos , Tamaño de la Partícula , Propiedades de Superficie
13.
Carbohydr Polym ; 224: 115173, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472861

RESUMEN

Bacterial cellulose (BC) features a nanofibrillar network structure that can provide a good template for quantum dots (QDs), to overcome the fluorescence quenching-effect of QDs in polymer composites. Here, we fabricated novel fluorescent aerogels with tunable emission by covalently binding environmentally-friendly ZnS(CuInS2)/ZnS core-shell quantum dots along the nanofibrillar BC. A new ligand of 3-(mercaptopropyl)trimethoxysilane allows QDs to transfer from toluene to alcohol solvent and stably bind to the BC. After supercritical CO2 drying, the resulting BC-QDs aerogels maintain the porous nanofibrillar morphology of BC with ultra-light-weight, the QDs are well-distributed along the BC fiber surfaces without aggregation. The emission wavelength can be tuned in a wide range from 470 to 750 nm by simply adjusting the QDs core component or shell layers. This work provides a new approach for fabricating QDs-polymer hydrogels and aerogels with well distributed QDs via chemical binding that potential as smart sensor, catalysis, and 3D display applications.


Asunto(s)
Aleaciones/química , Celulosa/química , Colorantes Fluorescentes/química , Gluconacetobacter xylinus/química , Nanofibras/química , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química , Geles , Tecnología Química Verde , Porosidad , Espectrometría de Fluorescencia , Propiedades de Superficie
14.
Molecules ; 24(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083427

RESUMEN

Aerogels are a special class of nanostructured materials with very high porosity and tunable physicochemical properties. Although a few types of aerogels have already reached the market in construction materials, textiles and aerospace engineering, the full potential of aerogels is still to be assessed for other technology sectors. Based on current efforts to address the material supply chain by a circular economy approach and longevity as well as quality of life with biotechnological methods, environmental and life science applications are two emerging market opportunities where the use of aerogels needs to be further explored and evaluated in a multidisciplinary approach. In this opinion paper, the relevance of the topic is put into context and the corresponding current research efforts on aerogel technology are outlined. Furthermore, key challenges to be solved in order to create materials by design, reproducible process technology and society-centered solutions specifically for the two abovementioned technology sectors are analyzed. Overall, advances in aerogel technology can yield innovative and integrated solutions for environmental and life sciences which in turn can help improve both the welfare of population and to move towards cleaner and smarter supply chain solutions.


Asunto(s)
Geles/química , Nanoestructuras/química , Porosidad
15.
RSC Adv ; 9(44): 25576-25582, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530065

RESUMEN

Zinc-copper-indium sulfide (ZCIS)-alloyed quantum dots are emerging as a new family of low toxic I-III-VI semiconductors due to their broad and color-tunable emissions as well as large Stokes shifts. Here, we fabricated a series of ZCIS QDs with tunable PL wavelengths and band-gap energies via a facile strategy by varying the ratio of A1-3 stock (Cu+/In3+) to the B stock (Zn2+) content. The ZnS shell was formed to improve the PL emission efficiency of the core nanoparticles and the PL emission wavelength of the resulting ZCIS/ZnS NCs gradually blue-shifted with an increase in the number of shell layers, resulting in a wide range of emissions from 800 nm to 518 nm that can be tuned by the core compositions or shell layer numbers for ZCIS/ZnS. Finally, the long-chain ligands dodecanethiol/octadecylamine on the quantum dots' surface were efficiently replaced by (3-mercaptopropyl)trimethoxysilane, thus enabling their solubility in an ionic liquid, which was confirmed via GC-MS. It also benefited for the co-dissolution of the polymers and chemical binding with other materials through the reactive silanol group, which provide stable and well-distributed ZCIS/ZnS QDs composites or surface coating by the QDs.

16.
Biomacromolecules ; 19(11): 4411-4422, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30252450

RESUMEN

Assembly of (bio)polymers into long-range anisotropic nanostructured gels and aerogels is of great interest in advanced material engineering since it enables directional tuning of properties, such as diffusivity, light, heat, and sound propagation, cell proliferation, and mechanical properties. Here we present an approach toward anisotropic cellulose II gels and aerogels that employs specific diffusion and phase separation phenomena occurring during decelerated infusion of an antisolvent into isotropic supercooled solutions of cellulose in an ionic liquid to effectuate supramolecular assembly of cellulose in anisotropic colloidal network structures. At the example of the distillable ionic liquid 1,1,3,3-tetramethylguanidinium acetate, the antisolvent ethanol, and spherocylindrical porous molds, we demonstrate that the proposed facile, environmental-benign and versatile route affords gels and aerogels whose specific anisotropic nanomorphology and properties reflect the preferred supramolecular cellulose orientation during phase separation, which is perpendicular to the direction of antisolvent diffusion. Comprehensive X-ray scattering experiments revealed that the (aero)gels are composed of an interconnected, fibrous, highly crystalline (CrI ≈ 72%), cellulose II with a cross-sectional Guinier radius of the struts of about 2.5 nm, and an order parameter gradient from about 0.1 to 0.2. The obtained gels and aerogels feature high specific surface areas (350-630 m2 g-1) and excellent mechanical properties like high toughness (up to 471 kJ m-3 for a 60% compression, ρB = 80 mg cm-3) and resilience (up to 13.4 kJ m-3, ρB = 65 mg cm-3).


Asunto(s)
Celulosa/química , Congelación , Geles/química , Líquidos Iónicos/química , Nanofibras/química , Polímeros/química , Solventes/química , Anisotropía , Transición de Fase , Porosidad , Conductividad Térmica
17.
Sensors (Basel) ; 18(7)2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021995

RESUMEN

The growing incidence of chronic wounds in the world population has prompted increased interest in chronic wound dressings with protease-modulating activity and protease point of care sensors to treat and enable monitoring of elevated protease-based wound pathology. However, the overall design features needed for the combination of a chronic wound dressing that lowers protease activity along with protease detection capability as a single platform for semi-occlusive dressings has scarcely been addressed. The interface of dressing and sensor specific properties (porosity, permeability, moisture uptake properties, specific surface area, surface charge, and detection) relative to sensor bioactivity and protease sequestrant performance is explored here. Measurement of the material's zeta potential demonstrated a correlation between negative charge and the ability of materials to bind positively charged Human Neutrophil Elastase. Peptide-cellulose conjugates as protease substrates prepared on a nanocellulosic aerogel were assessed for their compatibility with chronic wound dressing design. The porosity, wettability and absorption capacity of the nanocellulosic aerogel were consistent with values observed for semi-occlusive chronic wound dressing designs. The relationship of properties that effect dressing functionality and performance as well as impact sensor sensitivity are discussed in the context of the enzyme kinetics. The sensor sensitivity of the aerogel-based sensor is contrasted with current clinical studies on elastase. Taken together, comparative analysis of the influence of molecular features on the physical properties of three forms of cellulosic transducer surfaces provides a meaningful assessment of the interface compatibility of cellulose-based sensors and corresponding protease sequestrant materials for potential use in chronic wound sensor/dressing design platforms.


Asunto(s)
Vendajes , Celulosa/metabolismo , Fibra de Algodón , Elastasa de Leucocito/aislamiento & purificación , Elastasa de Leucocito/metabolismo , Péptidos/metabolismo , Absorción Fisicoquímica , Humanos , Permeabilidad , Porosidad , Humectabilidad
18.
Biomacromolecules ; 19(7): 2969-2978, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29757619

RESUMEN

2,3-Dialdehyde cellulose (DAC) of a high degree of oxidation (92% relative to AGU units) prepared by oxidation of microcrystalline cellulose with sodium periodate (48 °C, 19 h) is soluble in hot water. Solution casting, slow air drying, hot pressing, and reinforcement by cellulose nanocrystals afforded films (∼100 µm thickness) that feature intriguing properties: they have very smooth surfaces (SEM), are highly flexible, and have good light transmittance for both the visible and near-infrared range (89-91%), high tensile strength (81-122 MPa), and modulus of elasticity (3.4-4.0 GPa) depending on hydration state and respective water content. The extraordinarily low oxygen permeation of <0.005 cm3 µm m-2 day-1 kPa-1 (50% RH) and <0.03 cm3 µm m-2 day-1 kPa-1 (80% RH) can be regarded as a particularly interesting feature of DAC films. The unusually high initial contact angle of about 67° revealed a rather low hydrophilicity compared to other oxidatively modified or unmodified cellulosic materials which is most likely the result of inter- and intramolecular hemiacetal and hemialdal formation during drying and pressing.


Asunto(s)
Celulosa/análogos & derivados , Membranas Artificiales , Celulosa/química , Celulosa/efectos de la radiación , Elasticidad , Calor , Luz , Nanopartículas/química , Oxígeno/química
19.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534033

RESUMEN

Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and ß-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.


Asunto(s)
Técnicas Biosensibles/métodos , Celulosa/análogos & derivados , Elastasa de Leucocito/química , Nanopartículas/química , Biocatálisis , Geles/química , Gossypium/química , Humanos , Elastasa de Leucocito/metabolismo , Péptidos/química , Unión Proteica , Relación Estructura-Actividad
20.
J Biomater Appl ; 32(5): 622-637, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29022841

RESUMEN

Interfacing nanocellulosic-based biosensors with chronic wound dressings for protease point of care diagnostics combines functional material properties of high specific surface area, appropriate surface charge, and hydrophilicity with biocompatibility to the wound environment. Combining a protease sensor with a dressing is consistent with the concept of an intelligent dressing, which has been a goal of wound-dressing design for more than a quarter century. We present here biosensors with a nanocellulosic transducer surface (nanocrystals, nanocellulose composites, and nanocellulosic aerogels) immobilized with a fluorescent elastase tripeptide or tetrapeptide biomolecule, which has selectivity and affinity for human neutrophil elastase present in chronic wound fluid. The specific surface area of the materials correlates with a greater loading of the elastase peptide substrate. Nitrogen adsorption and mercury intrusion studies revealed gas permeable systems with different porosities (28-98%) and pore sizes (2-50 nm, 210 µm) respectively, which influence water vapor transmission rates. A correlation between zeta potential values and the degree of protease sequestration imply that the greater the negative surface charge of the nanomaterials, the greater the sequestration of positively charged neutrophil proteases. The biosensors gave detection sensitivities of 0.015-0.13 units/ml, which are at detectable human neutrophil elastase levels present in chronic wound fluid. Thus, the physical and interactive biochemical properties of the nano-based biosensors are suitable for interfacing with protease sequestrant prototype wound dressings. A discussion of the relevance of protease sensors and cellulose nanomaterials to current chronic wound dressing design and technology is included.


Asunto(s)
Vendajes , Técnicas Biosensibles/métodos , Celulosa/química , Elastasa de Leucocito/análisis , Nanoestructuras/química , Péptidos/química , Técnicas Biosensibles/instrumentación , Humanos , Péptido Hidrolasas/análisis , Transductores , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA