Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nanoscale ; 16(15): 7678-7689, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38533617

RESUMEN

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.


Asunto(s)
Nanopartículas de Magnetita , Ácidos Nucleicos , ADN/química , ADN de Cadena Simple , Fenómenos Magnéticos , Conformación de Ácido Nucleico
2.
Angew Chem Int Ed Engl ; 63(11): e202319920, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38236010

RESUMEN

Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.

3.
Soft Matter ; 20(6): 1275-1281, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38236226

RESUMEN

Liquid droplets of biomolecules serve as organizers of the cellular interior and are of interest in biosensing and biomaterials applications. Here, we investigate means to tune the interfacial properties of a model biomolecular liquid consisting of multi-armed DNA 'nanostar' particles. We find that long DNA molecules that have binding affinity for the nanostars are preferentially enriched on the interface of nanostar droplets, thus acting as surfactants. Fluorescent measurements indicate that, in certain conditions, the interfacial density of the surfactant is around 20 per square micron, indicative of a sparse brush-like structure of the long, polymeric DNA. Increasing surfactant concentration leads to decreased droplet size, down to the sub-micron scale, consistent with droplet coalesence being impeded by the disjoining pressure created by the brush-like surfactant layer. Added DNA surfactant also keeps droplets from adhering to both hydrophobic and hydrophilic solid surfaces, apparently due to this same disjoining effect of the surfactant layer. We thus demonstrate control of the size and adhesive properties of droplets of a biomolecular liquid, with implications for basic biophysical understanding of such droplets, as well as for their applied use.


Asunto(s)
ADN , Polímeros , ADN/química , Fenómenos Físicos , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química
4.
ACS Nano ; 18(1): 885-893, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109901

RESUMEN

DNA origami is a popular nanofabrication strategy that employs self-assembly of a long single scaffold strand, typically less than 10 kilobases in length, with hundreds of shorter staple strands into a desired shape. In particular, origami arranged as a single-layer rectangle has proven popular as flat pegboards that can display functionalities at staple-strand breakpoints, off the sides of the constituent double helices, with a ∼5.3 nm rhombic-lattice spacing. For applications that demand tighter spacing, functionalities can be displayed instead on the termini of helices of multilayer DNA origami. However, pegboards with the greatest addressable surface area are often found to be the most versatile. Given the practical limitations of the length of the scaffold that can be easily realized, designs that minimize the length of each helix would have advantages for maximizing the number of helices and therefore the number of addressable pixels on each terminal surface. Here we present an architecture for multilayer DNA origami displaying flush terminal interfaces from over 200 helices that each are only 5.3 turns in length. We characterize an example using cryo-EM imaging paired with single-particle analysis for further analysis of the global structure.


Asunto(s)
ADN , Nanoestructuras , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Nanotecnología/métodos
7.
Nat Commun ; 14(1): 7192, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938571

RESUMEN

The label-free identification of individual proteins from liquid samples by surface-enhanced Raman scattering (SERS) spectroscopy is a highly desirable goal in biomedical diagnostics. However, the small Raman scattering cross-section of most (bio-)molecules requires a means to strongly amplify their Raman signal for successful measurement, especially for single molecules. This amplification can be achieved in a plasmonic hotspot that forms between two adjacent gold nanospheres. However, the small (≈1-2 nm) gaps typically required for single-molecule measurements are not accessible for most proteins. A useful strategy would thus involve dimer structures with gaps large enough to accommodate single proteins, whilst providing sufficient field enhancement for single-molecule SERS. Here, we report on using a DNA origami scaffold for tip-to-tip alignment of gold nanorods with an average gap size of 8 nm. The gaps are accessible to streptavidin and thrombin, which are captured at the plasmonic hotspot by specific anchoring sites on the origami template. The field enhancement achieved for the nanorod dimers is sufficient for single-protein SERS spectroscopy with sub-second integration times. This design for SERS probes composed of DNA origami with accessible hotspots promotes future use for single-molecule biodiagnostics in the near-infrared range.


Asunto(s)
Nanosferas , Nanotubos , Espectrometría Raman , ADN , Oro , Polímeros
8.
Nat Nanotechnol ; 18(12): 1456-1462, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640908

RESUMEN

The combination of lithographic methods with two-dimensional DNA origami self-assembly has led, among others, to the development of photonic crystal cavity arrays and the exploration of sensing nanoarrays where molecular devices are patterned on the sub-micrometre scale. Here we extend this concept to the third dimension by mounting three-dimensional DNA origami onto nanopatterned substrates, followed by silicification to provide hybrid DNA-silica structures exhibiting mechanical and chemical stability and achieving feature sizes in the sub-10-nm regime. Our versatile and scalable method relying on self-assembly at ambient temperatures offers the potential to three-dimensionally position any inorganic and organic components compatible with DNA origami nanoarchitecture, demonstrated here with gold nanoparticles. This way of nanotexturing could provide a route for the low-cost production of complex and three-dimensionally patterned surfaces and integrated devices designed on the molecular level and reaching macroscopic dimensions.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanotecnología/métodos , Oro/química , Nanopartículas del Metal/química , ADN/química , Dióxido de Silicio/química , Conformación de Ácido Nucleico , Nanoestructuras/química
9.
Chemphyschem ; 24(22): e202300294, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37640688

RESUMEN

The DNA origami technique allows fast and large-scale production of DNA nanostructures that stand out with an accurate addressability of their anchor points. This enables the precise organization of guest molecules on the surfaces and results in diverse functionalities. However, the compatibility of DNA origami structures with catalytically active matter, a promising pathway to realize autonomous DNA machines, has so far been tested only in the context of bio-enzymatic activity, but not in chemically harsh reaction conditions. The latter are often required for catalytic processes involving high-energy fuels. Here, we provide proof-of-concept data showing that DNA origami structures are stable in 5 % hydrogen peroxide solutions over the course of at least three days. We report a protocol to couple these to platinum nanoparticles and show catalytic activity of the hybrid structures. We suggest that the presented hybrid structures are suitable to realize catalytic nanomachines combined with precisely engineered DNA nanostructures.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Peróxido de Hidrógeno , Platino (Metal) , Nanopartículas del Metal/química , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico
10.
Nat Commun ; 14(1): 3574, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328453

RESUMEN

Liquid droplets of biomolecules play key roles in organizing cellular behavior, and are also technologically relevant, yet physical studies of dynamic processes of such droplets have generally been lacking. Here, we investigate and quantify the dynamics of formation of dilute internal inclusions, i.e., vacuoles, within a model system consisting of liquid droplets of DNA 'nanostar' particles. When acted upon by DNA-cleaving restriction enzymes, these DNA droplets exhibit cycles of appearance, growth, and bursting of internal vacuoles. Analysis of vacuole growth shows their radius increases linearly in time. Further, vacuoles pop upon reaching the droplet interface, leading to droplet motion driven by the osmotic pressure of restriction fragments captured in the vacuole. We develop a model that accounts for the linear nature of vacuole growth, and the pressures associated with motility, by describing the dynamics of diffusing restriction fragments. The results illustrate the complex non-equilibrium dynamics possible in biomolecular condensates.


Asunto(s)
ADN , Vacuolas
11.
Nano Lett ; 23(4): 1236-1243, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36745573

RESUMEN

Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.


Asunto(s)
ADN , Nanopartículas , Microscopía de Fuerza Atómica/métodos , ADN/química
12.
ACS Nano ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594816

RESUMEN

DNA origami has taken a leading position in organizing materials at the nanoscale for various applications such as manipulation of light by exploiting plasmonic nanoparticles. We here present the arrangement of gold nanorods in a plasmonic nanoantenna dimer enabling up to 1600-fold fluorescence enhancement of a conventional near-infrared (NIR) dye positioned at the plasmonic hotspot between the nanorods. Transmission electron microscopy, dark-field spectroscopy, and fluorescence analysis together with numerical simulations give us insights on the heterogeneity of the observed enhancement values. The size of our hotspot region is ∼12 nm, granted by using the recently introduced design of NAnoantenna with Cleared HotSpot (NACHOS), which provides enough space for placing of tailored bioassays. Additionally, the possibility to synthesize nanoantennas in solution might allow for production upscaling.

13.
ACS Nano ; 16(10): 16143-16149, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36241172

RESUMEN

Chirality is a fundamental feature in all domains of nature, ranging from particle physics over electromagnetism to chemistry and biology. Chiral objects lack a mirror plane and inversion symmetry and therefore cannot be spatially aligned with their mirrored counterpart, their enantiomer. Both natural molecules and artificial chiral nanostructures can be characterized by their light-matter interaction, which is reflected in circular dichroism (CD). Using DNA origami, we assemble model meta-molecules from multiple plasmonic nanoparticles, representing meta-atoms accurately positioned in space. This allows us to reconstruct piece by piece the impact of varying macromolecular geometries on their surrounding optical near fields. Next to the emergence of CD signatures in the instance that we architect a third dimension, we design and implement sign-flipping signals through addition or removal of single particles in the artificial molecules. Our data and theoretical modeling reveal the hitherto unrecognized phenomenon of chiral plasmonic-dielectric coupling, explaining the intricate electromagnetic interactions within hybrid DNA-based plasmonic nanostructures.


Asunto(s)
Oro , Nanoestructuras , Oro/química , Dicroismo Circular , ADN/química , Nanoestructuras/química , Estereoisomerismo
14.
Biophys J ; 121(24): 4860-4866, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36045576

RESUMEN

Nanoscale stepper motors such as kinesin and dynein play a key role in numerous natural processes such as mitotic spindle formation during cell division or intracellular organelle transport. Their high efficacy in terms of operational speed and processivity has inspired the investigation of biomimetic technologies based on the use of programmable molecules. In particular, several designs of molecular walkers have been explored using DNA nanotechnology. Here, we study the actuation of a DNA-origami walker on a DNA-origami track based on three principles: 1) octapedal instead of bipedal walking for greater redundancy; 2) three pairs of orthogonal sequences, each of which fuels one repeatable stepping phase for cyclically driven motion with controlled directionality based on strain-based step selection; 3) designed size of only 3.5 nm per step on an origami track. All three principles are innovative in the sense that earlier demonstrations of steppers relied on a maximum of four legs on at least four orthogonal sequences to drive cyclic stepping, and took steps much larger than 3.4 nm in size. Using gel electrophoresis and negative-stain electron microscopy, we demonstrate cyclic actuation of DNA-origami structures through states defined by three sets of specific sequences of anchor points. However, this mechanism was not able to provide the intended control over directionality of movement. DNA-origami-based stepper motors will offer a future platform for investigating how increasing numbers of legs can be exploited to achieve robust stepping with relatively small step sizes.


Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , ADN/química , Dineínas/química , Cinesinas/química , Nanoestructuras/química , Conformación de Ácido Nucleico
15.
Nano Lett ; 22(18): 7408-7414, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36062566

RESUMEN

In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane. In this regime, we exploit the triangle asymmetric shape to obtain a transversal drift which is later used to transport the microtriangle in any direction along the plane. We explain this friction-induced anisotropic sliding with a minimal numerical model capable to reproduce the experimental results. Due to the flexibility offered by soft-lithographic sculpturing, our method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures operating in fluid media.


Asunto(s)
Campos Magnéticos , Magnetismo , Anisotropía , Fricción , Movimiento (Física)
16.
Mater Adv ; 3(8): 3438-3445, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35665317

RESUMEN

Plasmonic nanoparticles have unique properties which can be harnessed to manipulate light at the nanoscale. With recent advances in synthesis protocols that increase their stability, gold-silver core-shell nanoparticles have become suitable building blocks for plasmonic nanostructures to expand the range of attainable optical properties. Here we tune the plasmonic response of gold-silver core-shell nanorods over the visible spectrum by varying the thickness of the silver shell. Through the chiral arrangement of the nanorods with the help of various DNA origami designs, the spectral tunability of the plasmon resonance frequencies is transferred into circular dichroism signals covering the spectrum from 400 nm to 700 nm. Our approach could aid in the construction of better sensors as well as metamaterials with a tunable optical response in the visible region.

17.
Biophys J ; 121(24): 4800-4809, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36811525

RESUMEN

DNA self-assembly, and in particular DNA origami, has evolved into a reliable workhorse for organizing organic and inorganic materials with nanometer precision and with exactly controlled stoichiometry. To ensure the intended performance of a given DNA structure, it is beneficial to determine its folding temperature, which in turn yields the best possible assembly of all DNA strands. Here, we show that temperature-controlled sample holders and standard fluorescence spectrometers or dynamic light-scattering setups in a static light-scattering configuration allow for monitoring the assembly progress in real time. With this robust label-free technique, we determine the folding and melting temperatures of a set of different DNA origami structures without the need for more tedious protocols. In addition, we use the method to follow digestion of DNA structures in the presence of DNase I and find strikingly different resistances toward enzymatic degradation depending on the structural design of the DNA object.


Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , Nanoestructuras/química , ADN/química , Temperatura , Fluorescencia , Conformación de Ácido Nucleico
18.
Adv Mater ; 33(37): e2101986, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34337805

RESUMEN

The design of dynamic, reconfigurable devices is crucial for the bottom-up construction of artificial biological systems. DNA can be used as an engineering material for the de-novo design of such dynamic devices. A self-assembled DNA origami switch is presented that uses the transition from double- to single-stranded DNA and vice versa to create and annihilate an entropic force that drives a reversible conformational change inside the switch. It is distinctively demonstrated that a DNA single-strand that is extended with 0.34 nm per nucleotide - the extension this very strand has in the double-stranded configuration - exerts a contractive force on its ends leading to large-scale motion. The operation of this type of switch is demonstrated via transmission electron microscopy, DNA-PAINT super-resolution microscopy and darkfield microscopy. The work illustrates the intricate and sometimes counter-intuitive forces that act in nanoscale physical systems that operate in fluids.


Asunto(s)
ADN/química , Nanoestructuras/química , ADN de Cadena Simple/química , Oro/química , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Tamaño de la Partícula
19.
Nano Lett ; 21(17): 7298-7308, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428053

RESUMEN

Chiral plasmonic nanostructures exhibit anomalously strong chiroptical signals and offer the possibility to realize asymmetric photophysical and photochemical processes controlled by circularly polarized light. Here, we use a chiral DNA-assembled nanorod pair as a model system for chiral plasmonic photomelting. We show that both the enantiomeric excess and consequent circular dichroism can be controlled with chiral light. The nonlinear chiroptical response of our plasmonic system results from the chiral photothermal effect leading to selective melting of the DNA linker strands. Our study describes both the single-complex and collective heating regimes, which should be treated with different models. The chiral asymmetry factors of the calculated photothermal and photomelting effects exceed the values typical for the chiral molecular photochemistry at least 10-fold. Our proposed mechanism can be used to develop chiral photoresponsive systems controllable with circularly polarized light.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanotubos , Dicroismo Circular , ADN
20.
ACS Nano ; 15(7): 10769-10774, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34255962

RESUMEN

DNA origami has emerged as a powerful molecular breadboard with nanometer resolution that can integrate the world of bottom-up (bio)chemistry with large-scale, macroscopic devices created by top-down lithography. Substituting the top-down patterning with self-assembled colloidal nanoparticles now takes the manufacturing complexity of top-down lithography out of the equation. As a result, the deterministic positioning of single molecules or nanoscale objects on macroscopic arrays is benchtop ready and easily accessible.


Asunto(s)
ADN , Nanotecnología , ADN/química , Impresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...