Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 13(1): 332, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891168

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of ß-amyloid peptide (Aß). It affects cognition and leads to memory impairment. The mitochondrial translocator protein (TSPO) plays an essential role in maintaining mitochondrial homeostasis and has been implicated in several neuronal disorders or neuronal injuries. Ligands targeting the mitochondrial translocator protein (18 kDa), promote neurosteroidogenesis and may be neuroprotective. To study whether the TSPO ligand XBD173 may exert early neuroprotective effects in AD pathology we investigated the impact of XBD173 on amyloid toxicity and neuroplasticity in mouse models of AD. We show that XBD173 (emapunil), via neurosteroid-mediated signaling and delta subunit-containing GABAA receptors, prevents the neurotoxic effect of Aß on long-term potentiation (CA1-LTP) in the hippocampus and prevents the loss of spines. Chronic but not acute administration of XBD173 ameliorates spatial learning deficits in transgenic AD mice with arctic mutation (ArcAß). The heterozygous TSPO-knockout crossed with the transgenic arctic mutation model of AD mice (het TSPOKO X ArcAß) treated with XBD173 does not show this improvement in spatial learning suggesting TSPO is needed for procognitive effects of XBD173. The neuroprotective profile of XBD173 in AD pathology is further supported by a reduction in plaques and soluble Aß levels in the cortex, increased synthesis of neurosteroids, rescued spine density, reduction of complement protein C1q deposits, and reduced astrocytic phagocytosis of functional synapses both in the hippocampus and cortex. Our findings suggest that XBD173 may exert therapeutic effects via TSPO in a mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Receptores de GABA/metabolismo , Ratones Transgénicos , Proteínas Portadoras , Péptidos beta-Amiloides/metabolismo , Ligandos , Cognición , Modelos Animales de Enfermedad
2.
Neurobiol Dis ; 183: 106169, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257664

RESUMEN

Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.


Asunto(s)
Fármacos Neuroprotectores , Neuroesteroides , Enfermedad de Parkinson , Humanos , Neuroesteroides/metabolismo , Fármacos Neuroprotectores/farmacología , 5-alfa-Dihidroprogesterona/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Progesterona/farmacología , Progesterona/metabolismo , Encéfalo/metabolismo , Esteroides/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768796

RESUMEN

The 18 kDa translocator protein (TSPO/PBR) is a multifunctional evolutionary highly conserved outer mitochondrial membrane protein. Decades of research has reported an obligatory role of TSPO/PBR in both mitochondrial cholesterol transport and, thus, steroid production. However, the strict dependency of steroidogenesis on TSPO/PBR has remained controversial. The aim of this study was to provide insight into the steroid profile in complete C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout male mice (TSPO-KO) under basal conditions. The steroidome in the brain, adrenal glands, testes and plasma was measured by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). We found that steroids present in wild-type (WT) mice were also detected in TSPO-KO mice, including pregnenolone (PREG), progestogens, mineralo-glucocorticosteroids and androgens. The concentrations of PREG and most metabolites were similar between genotypes, except a significant decrease in the levels of the 5α-reduced metabolites of progesterone (PROG) in adrenal glands and plasma and of the 5α-reduced metabolites of corticosterone (B) in plasma in TSPO-KO compared to WT animals, suggesting other regulatory functions for the TSPO/PBR. The expression levels of the voltage-dependent anion-selective channel (VDAC-1), CYP11A1 and 5α-reductase were not significantly different between both groups. Thus, the complete deletion of the tspo gene in male mice does not impair de novo steroidogenesis in vivo.


Asunto(s)
Receptores de GABA , Espectrometría de Masas en Tándem , Masculino , Ratones , Animales , Receptores de GABA/genética , Receptores de GABA/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Esteroides , Proteínas Portadoras , Pregnenolona
4.
JCI Insight ; 8(5)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729672

RESUMEN

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Asunto(s)
Células Endoteliales , Estrógenos , Animales , Ratones , Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Estradiol/farmacología , Arterias
5.
Endocrinology ; 164(1)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36306407

RESUMEN

Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3ß5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.


Asunto(s)
Isquemia Encefálica , Neuroesteroides , Accidente Cerebrovascular , Masculino , Animales , Ratones , Progesterona , Ratones Endogámicos C57BL , Isquemia
6.
Front Endocrinol (Lausanne) ; 13: 892213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685208

RESUMEN

Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Estradiol , Femenino , Humanos , Oviductos/metabolismo , Fenoles , Progesterona/metabolismo , Ovinos , Sulfonas , Espectrometría de Masas en Tándem
7.
Eur J Pharmacol ; 923: 174935, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378102

RESUMEN

Chronic neuropathic pain (CNP) can result from surgery or traumatic injury, but also from peripheral neuropathies caused by diseases, viral infections, or toxic treatments. Opioids, although very effective for acute pain, do not prevent the development of CNP, and are considered as insufficient treatment. Therefore, there is high need for effective and safe non-opioid options to treat, prevent and eventually reverse CNP. A more effective approach to alleviating CNP would constitute a treatment that acts concurrently on various mechanisms involved in relieving pain symptoms and preventing or reversing chronification by enhancing both neuroprotection and neuroregeneration. We have identified and characterized GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-caboxylic acid amide), a novel drug which is able to activate both voltage-gated potassium channels of the Kv7 family and the mitochondrial translocator protein 18 kDa (TSPO). The dual mode-of-action (MoA) of GRT-X was indicated in in vitro studies and in vivo in a rat model of diabetic neuropathy. In this model, mechanical hyperalgesia was dose-dependently inhibited. After severe crush lesion of cervical spinal nerves in rats, GRT-X promoted survival, speeded up regrowth of sensory and motor neurons, and accelerated recovery of behavioral and neuronal responses to heat, cold, mechanical and electrical stimuli. These properties may reduce the likelihood of chronification of acute pain, and even potentially relieve established CNP. The absence of a conditioned place preference in rats suggests lack of abuse potential. In conclusion, GRT-X offers a promising preclinical profile with a novel dual MoA.


Asunto(s)
Dolor Agudo , Neuralgia , Dolor Agudo/tratamiento farmacológico , Animales , Hiperalgesia/metabolismo , Regeneración Nerviosa , Neuralgia/metabolismo , Neuroprotección , Ratas
8.
Nat Neurosci ; 24(10): 1392-1401, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400844

RESUMEN

Compromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring. A single injection of ALLO or muscimol, a GABAAR agonist, during late gestation abolished these alterations. Comparison of male and female human preterm infant cerebellum also showed sex-linked myelination marker alteration, suggesting similarities between mouse placental ALLO insufficiency and human preterm brain development. This study reveals a new role for a placental hormone in shaping brain regions and behaviors in a sex-linked manner. Placental hormone replacement might offer novel therapeutic opportunities to prevent later neurobehavioral disorders.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Glándulas Endocrinas/fisiología , Placenta/fisiología , Pregnanolona/deficiencia , Pregnanolona/fisiología , Conducta Social , Aldehído Reductasa/genética , Animales , Trastorno del Espectro Autista/etiología , Cerebelo/fisiología , Femenino , Agonistas del GABA/farmacología , Moduladores del GABA , Eliminación de Gen , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Muscimol/farmacología , Embarazo , Receptores de GABA-A/fisiología , Caracteres Sexuales , Trofoblastos/metabolismo , Sustancia Blanca/patología
9.
Mol Neurobiol ; 58(5): 2088-2106, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411236

RESUMEN

Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3ß-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFß, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Testosterona/uso terapéutico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Aromatasa/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/metabolismo , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fármacos Neuroprotectores/farmacología , Receptores Androgénicos/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Testosterona/metabolismo , Testosterona/farmacología , Resultado del Tratamiento
10.
Artículo en Inglés | MEDLINE | ID: mdl-33039311

RESUMEN

The role of progesterone goes beyond the maintenance of pregnancy. The hormone, indeed, protects the developing fetal brain and influences its maturation. Metabolomes analyzed by mass spectrometric methods have revealed the great diversity of steroids in maternal plasma and fetal fluids, but their developmental significance remains to be investigated. Progesterone and its metabolites reach highest levels during the third trimester, when the brain growth spurt occurs: its volume triples, synaptogenesis is particularly active, and axons start to be myelinated. This developmental stage coincides with a period of great vulnerability. Studies in sheep have shown that progesterone and its metabolite allopregnanolone protect the vulnerable fetal brain. Work in rats and mice have demonstrated that progesterone plays an important role in myelin formation. These experimental studies are discussed in relation to preterm birth. Influences of progesterone on very early stages of neural development at the beginning of pregnancy are yet to be explored.


Asunto(s)
Nacimiento Prematuro , Progesterona , Animales , Femenino , Feto , Humanos , Recién Nacido , Ratones , Neuroprotección , Embarazo , Pregnanolona , Ratas , Ovinos
11.
Neurobiol Stress ; 12: 100211, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32258256

RESUMEN

Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.

12.
Neuropharmacology ; 170: 108038, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32151648

RESUMEN

Intranasal administration is emerging as a very promising route to deliver therapeutics to the brain. We have recently shown that the intranasal delivery of progesterone at 8 mg/kg is neuroprotective after stroke in male mice. To explore the translational potential of intranasal progesterone treatment, we performed a dose-response study and analyzed outcomes at 48 h after middle cerebral artery occlusion (MCAO). The effects on functional outcomes at long-term were examined by using the optimal dose. In the first experiment, male C57BL/6JRj mice were treated with progesterone at 8, 16 or 24 mg/kg, or with placebo at 1, 6 and 24 h post-MCAO. Our results show that the dose of 8 mg/kg was optimal in counteracting the early histopathological impairments as well as in improving functional recovery. Steroid profiling in plasma showed that the dose of 8 mg/kg is the one that leads to sustained high levels of progesterone and its neuroactive metabolites. In the second experiment, the dose of 8 mg/kg was used and analyzes were performed at 2, 7 and 21 days post-MCAO. Progesterone increased survival, glycemia and body weight. Furthermore, progesterone decreased neurological deficits and improved performances of mice on the rotarod and pole as early as 2 days and up to 21 days post-MCAO. These findings show that intranasal administration of progesterone has a significant translational potential as a cerebroprotective treatment after stroke that can be effective to reduce mortality, to limit tissue and cell damage at the acute phase; and to confer a long-term functional recovery.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Progesterona/administración & dosificación , Administración Intranasal , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/sangre , Isquemia Encefálica/patología , Relación Dosis-Respuesta a Droga , Geles , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/sangre , Progesterona/sangre
14.
Neuropharmacology ; 145(Pt B): 283-291, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29885423

RESUMEN

Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Progesterona/administración & dosificación , Administración Intranasal , Animales , Humanos , Fármacos Neuroprotectores/farmacocinética , Progesterona/farmacocinética
15.
Cell Mol Neurobiol ; 39(4): 551-568, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30302630

RESUMEN

Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.


Asunto(s)
Progesterona/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Femenino , Humanos , Masculino , Neuroprotección , Receptores de Progesterona/metabolismo , Caracteres Sexuales , Transducción de Señal
16.
J Neuroendocrinol ; 31(2): e12681, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30585662

RESUMEN

Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/ß-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.


Asunto(s)
Encéfalo/metabolismo , Codorniz/fisiología , Caracteres Sexuales , Esteroides/sangre , Esteroides/metabolismo , 20-alfa-Dihidroprogesterona/sangre , 20-alfa-Dihidroprogesterona/metabolismo , 5-alfa-Dihidroprogesterona/sangre , 5-alfa-Dihidroprogesterona/metabolismo , Animales , Castración , Corticosterona/sangre , Corticosterona/metabolismo , Estrógenos/sangre , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Pregnenolona/sangre , Pregnenolona/metabolismo , Área Preóptica/metabolismo , Testosterona/sangre , Testosterona/metabolismo
17.
Placenta ; 69: 40-49, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30213483

RESUMEN

INTRODUCTION: Estrogens and progesterone play critical roles in angiogenesis and vasodilation. Moreover, placental aromatase deficiency is detected in women with preeclampsia (PE) at delivery. We hypothesized that abnormal steroidogenesis occurs much earlier than typical PE diagnosis. Thus, we investigated whether the circulating steroid profile was already disturbed at 24-29 weeks of gestation in women with subsequent PE, and compared the profile with that of women with "placental" small gestational age (SGA) without PE. METHODS: We selected nulliparous women (n = 90) from the MOMA trial, including women with PE (n = 25), SGA (n = 25), and controls (NP; n = 40), for plasma steroid profiling by gas chromatography/mass spectrometry and to measure placental growth factor and soluble fms-like tyrosine kinase-1. Placental aromatase expression was evaluated in a new set of women. RESULTS: Compared with that of controls, the women with PE had a significantly lower estrone/androstenedione ratio, and exhibited a decreasing trend for estradiol and estrone levels. Lower estriol levels were observed in the SGA group compared to the NP group. Compared with that of controls, the women with PE and SGA had significantly higher levels of 20α-dihydroprogesterone (20α-DHP) and 20α-DHP/progesterone ratios. Pregnenolone sulfate levels were lower in the PE group than in the NP and SGA groups. Decreased expression of aromatase was observed in the PE group compared to the control group. DISCUSSION: Preeclampsia appears to be characterized by specific steroidogenesis dysregulation long before PE diagnosis, highlighting potential new biomarkers of PE.


Asunto(s)
Aromatasa/metabolismo , Estrógenos/sangre , Factor de Crecimiento Placentario/sangre , Placenta/metabolismo , Preeclampsia/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Adulto , Androstenodiona/sangre , Estradiol/sangre , Estriol/sangre , Estrona/sangre , Femenino , Humanos , Espectrometría de Masas , Embarazo , Pregnenolona/sangre , Adulto Joven
18.
Horm Behav ; 103: 80-96, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29909262

RESUMEN

In seasonally breeding songbirds such as canaries, singing behavior is predominantly under the control of testosterone and its metabolites. Short daylengths in the fall that break photorefractoriness are followed by increasing daylengths in spring that activate singing via both photoperiodic and hormonal mechanisms. However, we observed in a group of castrated male Fife fancy canaries maintained for a long duration under a short day photoperiod a large proportion of subjects that sang at high rates. This singing rate was not correlated with variation in the low circulating concentrations of testosterone. Treatment of these actively singing castrated male canaries with a combination of an aromatase inhibitor (ATD) and an androgen receptor blocker (flutamide) only marginally decreased this singing activity as compared to control untreated birds and did not affect various measures of song quality. The volumes of HVC and of the medial preoptic nucleus (POM) were also unaffected by these treatments but were relatively large and similar to volumes in testosterone-treated males. In contrast, peripheral androgen-sensitive structures such as the cloacal protuberance and syrinx mass were small, similar to what is observed in castrates. Together these data suggest that after a long-term steroid deprivation singing behavior can be activated by very low concentrations of testosterone. Singing normally depends on the activation by testosterone and its metabolites of multiple downstream neurochemical systems such as catecholamines, nonapeptides or opioids. These transmitter systems might become hypersensitive to steroid action after long term castration as they probably are at the end of winter during the annual cycle in seasonally breeding temperate zone species.


Asunto(s)
Conducta Animal/efectos de los fármacos , Canarios/fisiología , Hormonas Esteroides Gonadales/farmacología , Orquiectomía , Vocalización Animal/efectos de los fármacos , Antagonistas de Andrógenos/farmacología , Androstatrienos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Flutamida/farmacología , Masculino , Orquiectomía/veterinaria , Fotoperiodo , Reproducción/efectos de los fármacos , Reproducción/fisiología , Estaciones del Año , Territorialidad , Testosterona/farmacología
19.
Sci Rep ; 7(1): 17846, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259324

RESUMEN

Sexual experience in male rodents, induced by a first exposure to a receptive female, improves efficiency of following copulations. In mice, the mechanisms supporting this improvement are poorly understood. We characterized molecular modifications of the mouse hypothalamic medial preoptic area (mPOA), the main integrative structure for male sexual behaviour, after a single mating event. This paradigm induced long-lasting behavioural improvements and mPOA morphological changes, evidenced by dendritic spine maturation and an increase in the acetylated and tri-methylated forms of histone H3. Ejaculation affected testosterone, progesterone and corticosterone levels in both naive and experienced mice, but sexual experience did not modify basal plasma or hypothalamic levels of steroids. In contrast to studies carried out in rats, no changes were observed, either in the nitrergic system, or in sex steroid receptor levels. However, levels of glutamate- and calcium-associated proteins, including PSD-95, calbindin and the GluN1 subunit of the NMDA receptor, were increased in sexually experienced male mice. The Iba-1 microglial marker was up-regulated in these animals suggesting multicellular interactions induced within the mPOA by sexual experience. In conclusion, plasticity mechanisms induced by sexual experience differ between rat and mouse, even if in both cases they converge to potentiation of the mPOA network.


Asunto(s)
Área Preóptica/fisiología , Conducta Sexual Animal/fisiología , Animales , Copulación/fisiología , Corticosterona/metabolismo , Eyaculación/fisiología , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Área Preóptica/metabolismo , Progesterona/metabolismo , Ratas , Receptores de Esteroides/metabolismo , Testosterona/metabolismo
20.
Front Aging Neurosci ; 9: 406, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270123

RESUMEN

The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...