Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894392

RESUMEN

BACKGROUND: Liquid biopsy enables the non-invasive analysis of genetic tumor variants in circulating free DNA (cfDNA) in plasma. Accurate analytical validation of liquid biopsy NGS assays is required to detect variants with low variant allele frequencies (VAFs). METHODS: Six types of commercial cfDNA reference materials and 42 patient samples were analyzed using a duplex-sequencing-based liquid biopsy NGS assay. RESULTS: We comprehensively evaluated the similarity of commercial cfDNA reference materials to native cfDNA. We observed significant differences between the reference materials in terms of wet-lab and sequencing quality as well as background noise. No reference material resembled native cfDNA in all performance metrics investigated. Based on our results, we established guidelines for the selection of appropriate reference materials for the different steps in performance evaluation. The use of inappropriate materials and cutoffs could eventually lead to a lower sensitivity for variant detection. CONCLUSION: Careful consideration of commercial reference materials is required for performance evaluation of liquid biopsy NGS assays. While the similarity to native cfDNA aids in the development of experimental protocols, reference materials with well-defined variants are preferable for determining sensitivity and precision, which are essential for accurate clinical interpretation.

2.
Front Oncol ; 12: 1014592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636551

RESUMEN

Background: Liquid biopsy (LB) is a promising complement to tissue biopsy for detection of clinically relevant genetic variants in cancer and mosaic diseases. A combined workflow to enable parallel tissue and LB analysis is required to maximize diagnostic yield for patients. Methods: We developed and validated a cost-efficient combined next-generation sequencing (NGS) workflow for both tissue and LB samples, and applied Duplex sequencing technology for highly accurate detection of low frequency variants in plasma. Clinically relevant cutoffs for variant reporting and quantification were established. Results: We investigated assay performance characteristics for very low amounts of clinically relevant variants. In plasma, the assay achieved 100% sensitivity and 92.3% positive predictive value (PPV) for single nucleotide variants (SNVs) and 91.7% sensitivity and 100% PPV for insertions and deletions (InDel) in clinically relevant hotspots with 0.5-5% variant allele frequencies (VAFs). We further established a cutoff for reporting variants (i.e. Limit of Blank, LOB) at 0.25% VAF and a cutoff for quantification (i.e. Limit of Quantification, LOQ) at 5% VAF in plasma for accurate clinical interpretation of analysis results. With our LB approach, we were able to identify the molecular cause of a clinically confirmed asymmetric overgrowth syndrome in a 10-year old child that would have remained undetected with tissue analysis as well as other molecular diagnostic approaches. Conclusion: Our flexible and cost-efficient workflow allows analysis of both tissue and LB samples and provides clinically relevant cutoffs for variant reporting and precise quantification. Complementing tissue analysis by LB is likely to increase diagnostic yield for patients with molecular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...