Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(21): 34963-34979, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859240

RESUMEN

The paper presents a 170 GHz quasi-optical sub-harmonic mixer with a 3D-printed back-to-back lenses packaging. The quasi-optical mixer is comprised by a pair of antiparallel GaAs Schottky diodes, a patch antenna for receiving local oscillator (LO) pump signal, a symmetric-slit patch antenna for receiving radio frequency (RF) signal, dual 3D-printed lenses and a matching network. The quasi-optical mixer with a pair of antiparallel GaAs Schottky diodes is designed on a multilayer build-up printed circuit board (PCB) utilizing commercially low-cost and high-density interconnect (HDI) technology. The LO and RF antennas are placed on the front and back of the multilayer build-up substrate, respectively, thus significantly simplifying the quasi-optical design. Furthermore, dual 3D-printed lenses placed back-to-back are proposed for LO and RF antennas radiation gain enhancement and mechanical robustness. Additionally, the buried planar reflectors in the substrate maintain effective radiation isolation between the antennas. For facilitating coupling efficiency of signal power into the Schottky diodes and signal isolation between the LO pump signal and RF signal, a compact matching network with low-loss quasi-coaxial via transition structure is integrated in the mixer circuit. The measured single-sideband conversion loss is from 11.3 to 15.4 dB in an operation range of 160 to 180 GHz. The measured radiation patterns agree well with the simulated results.

2.
Appl Opt ; 62(20): 5399-5408, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37706856

RESUMEN

The terahertz frequency modulation continuous-wave (THz FMCW) imaging technology has been widely used in non-destructive testing applications. However, THz FMCW real-aperture radar usually has a small depth of field and poor lateral resolution, thus restricting the high-precision imaging application. This paper proposes a 150-220 GHz FMCW Bessel beam imaging system, effectively doubling the depth of field and unifying the lateral resolution compared to the Gaussian beam quasi-optical system. Moreover, a THz image restoration algorithm based on local gradients and convolution kernel priors is proposed to eliminate further the convolution effect introduced by the Bessel beam, thereby enhancing the lateral resolution to 2 mm. It effectively improves the image under-restoration or over-restoration caused by the mismatch between the ideal and actual point spread function. The imaging results of the resolution test target and semiconductor device verify the advantages of the proposed system and algorithm.

3.
Appl Opt ; 61(24): 7189-7196, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36256339

RESUMEN

Terahertz frequency modulation continuous wave (THz FMCW) imaging technology has been widely used in non-destructive testing (NDT) applications of non-metallic materials. However, THz FMCW real-aperture radar usually has a narrow bandwidth and small depth of field, thus restricting the application of THz FMCW NDT. In this paper, a wideband THz signal (220-500 GHz) generation method is proposed by time-division multiplexing. Moreover, a dual-band quasi-optical design with a large depth of field is proposed based on the THz Bessel beam, and a high-quality range profile is obtained. Especially, a signal fusion extended Fourier analysis algorithm without prior knowledge is proposed to further enhance the range profile accuracy, which improves the range resolution to 0.28 mm (λ/3, center frequency 360 GHz). The effectiveness and advantages of the proposed system are verified by artificially constructing composite materials.

4.
Sensors (Basel) ; 22(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271147

RESUMEN

This paper presents a metamaterial sensor using a double slit complementary square ring resonator (DS-CSRR) that has been utilized for the measurement of dielectric materials, especially coal powder. The design is optimized for best performance of deep notch depth in transmission coefficient (Magnitude of S21). Sensitivity analysis of transmission coefficient with respect to structure dimensions has been carried out. Metamaterial properties of double negative permitivity and permeability were extracted from the S-parameters of this sensor. The optimized structure is fabricated using low cost FR-4 PCB board. Measured result shows resonance frequency of 4.75 GHz with a deep notch up to -41 dB. Simulated and measured results show good agreement in desired frequency band. For material characterization, first, two known materials are characterized using this metamaterial sensor. Their respective resonances and dielectric constants are known, so the transcendental equation of the sensor is formulated. Afterwards, the proposed sensor is used for dielectric measurement of two types of coal powder, i.e., Anthracite and Bituminous. The measured value of dielectric constant of Anthracite coal is 3.5 and of Bituminous coal is 2.52. This is a simple and effective nondestructive measurement technique for material testing applications.

5.
Opt Express ; 30(6): 9814-9822, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299396

RESUMEN

The terahertz frequency modulated continuous wave (THz FMCW) imaging has proved to be a novel nondestructive testing (NDT) technology for non-metal materials, and the large bandwidth is usually required to meet high range resolution demands in many applications such as multilayer sample under test (SUT). However, broadband THz hardware is difficult to design. In this paper, an ultra-wideband THz FMCW generation method is proposed, which provides frequency modulation bandwidths of up to 386 GHz by time-division multiplexing. Furthermore, an ultra-wideband signal fusion algorithm (USFA) is also proposed and significantly improves the range resolution to 0.46 mm in air. Results from the artificially constructed multilayer structure demonstrate the superiority and effectiveness of our method quantitatively.

6.
Opt Express ; 28(15): 22200-22217, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752486

RESUMEN

During the real-aperture-scanning imaging process, terahertz (THz) images are often plagued with the problem of low spatial resolution. Therefore, an accommodative super-resolution framework for THz images is proposed. Specifically, the 3D degradation model for the imaging system is firstly proposed by incorporating the focused THz beam distribution, which determines the relationship between the imaging range and the corresponding image restoration level. Secondly, an adjustable CNN is introduced to cope with this range dependent super-resolution problem. By simply tuning an interpolation parameter, the network can be adjusted to produce arbitrary restoration levels between the trained fixed levels without extra training. Finally, by selecting the appropriate interpolation coefficient according to the measured imaging range, each THz image can be coped with its matched network and reach the outstanding super-resolution effect. Both the simulated and real tested data, acquired by a 160 ∼ 220 GHz imager, have been used to demonstrate the superiority of our method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...