Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 55: 102412, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917681

RESUMEN

The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.

2.
J Neurosci Res ; 100(9): 1721-1731, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35730417

RESUMEN

Peripheral nerve injury (PNI) is frequent and many patients suffer lifelong disabilities in severe cases. Although the peripheral nervous system is able to regenerate, its potential is limited. In this study, we tested in a nerve regeneration model in rat the potential beneficial effect of a short mimetic peptide, named PSELT, which derives from SELENOT, an essential thioredoxin-like selenoprotein endowed with neuroprotective and antioxidant activities. For this purpose, the right facial nerve of female Long-Evans rats was axotomized then bridged with a free femoral vein interposition graft. PSELT (1 µM) was injected into the vein immediately and 48 h after the injury, and the effects observed were compared to those found after an end-to-end suture used as a gold standard treatment. Whisking behavior, electrophysiological potential, and histological analyses were performed 3 months after injury to determine the effects of these treatments. These analyses revealed that PSELT-treated animals exhibit a better motor recovery in terms of protraction amplitude and velocity of vibrissae compared to control and end-sutured nerve animal groups. Moreover, administration of PSELT following injury enhanced muscle innervation, axonal elongation, and myelination of newly formed nerve fibers. Altogether, these results indicate that a PSELT-based treatment is sufficient to enhance facial nerve myelination and regeneration and could represent a new therapeutic tool to treat PNI.


Asunto(s)
Traumatismos del Nervio Facial , Traumatismos de los Nervios Periféricos , Animales , Axones/patología , Traumatismos del Nervio Facial/patología , Traumatismos del Nervio Facial/terapia , Femenino , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Long-Evans
3.
Antioxid Redox Signal ; 33(17): 1257-1275, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32524825

RESUMEN

Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.


Asunto(s)
Retículo Endoplásmico/fisiología , Genes Esenciales , Homeostasis , Oxidorreductasas/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Animales , Susceptibilidad a Enfermedades , Estrés del Retículo Endoplásmico , Humanos , Ratones , Nutrientes/metabolismo , Estrés Oxidativo , Selenio/metabolismo , Transducción de Señal
4.
Mol Neurobiol ; 56(6): 4086-4101, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30267375

RESUMEN

Several cues including pituitary adenylate cyclase-activating polypeptide (PACAP), which acts through cAMP stimulation, specify the conversion of sympathoadrenal (SA) precursors toward different cell phenotypes by promoting their survival and differentiation. Selenoprotein T (SELENOT) is a PACAP-stimulated ER oxidoreductase that exerts an essential antioxidant activity and whose up-regulation is associated with SA cell differentiation. In the present study, we investigated the transcriptional cascade elicited by PACAP/cAMP to trigger SELENOT gene transcription during the conversion of PC12 cells from SA progenitor-like cells toward a neuroendocrine phenotype. Unexpectedly, we found that PACAP/cAMP recruits the canonical pathway that regulates mitochondrial function in order to elicit SELENOT gene transcription and the consequent antioxidant response during PC12 cell differentiation. This cascade involves LKB1-mediated AMPK activation in order to stimulate SELENOT gene transcription through the PGC1-α/NRF-1 complex, thus allowing SELENOT to promote PACAP-stimulated neuroendocrine cell survival and differentiation. Our data reveal that a PACAP and cAMP-activated AMPK-PGC-1α/NRF-1 cascade is critical for the coupling of oxidative stress tolerance, via SELENOT gene expression, and mitochondrial biogenesis in order to achieve PC12 cell differentiation. The data further highlight the essential role of SELENOT in cell metabolism during differentiation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Neuroendocrinas/citología , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Selenoproteínas/genética , Transcripción Genética/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Modelos Biológicos , Células Neuroendocrinas/efectos de los fármacos , Células Neuroendocrinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Unión Proteica/efectos de los fármacos , Ratas , Selenoproteínas/metabolismo
5.
Free Radic Biol Med ; 127: 145-152, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800653

RESUMEN

Selenoprotein T (SELENOT, SELT) is a thioredoxin-like enzyme anchored at the endoplasmic reticulum (ER) membrane, whose primary structure is highly conserved during evolution. SELENOT is abundant in embryonic tissues and its activity is essential during development since its gene knockout in mice is lethal early during embryogenesis. Although its expression is repressed in most adult tissues, SELENOT remains particularly abundant in endocrine organs such as the pituitary, pancreas, thyroid and testis, suggesting an important role of this selenoprotein in hormone production. Our recent studies showed indeed that SELENOT plays a key function in insulin and corticotropin biosynthesis and release by regulating ER proteostasis. Although SELENOT expression is low or undetectable in most cerebral structures, its gene conditional knockout in brain provokes anatomical alterations that impact mice behavior. This suggests that SELENOT also plays an important role in brain development and function. In addition, SELENOT is induced after injury in brain or liver and exerts a cytoprotective effect. Thus, the data gathered during the last ten years of intense investigation of this newly discovered thioredoxin-like enzyme point to an essential function during development and in adult endocrine organs or lesioned brain, most likely by regulating ER redox circuits that control homeostasis and survival of cells with intense metabolic activity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Homeostasis/fisiología , Neurogénesis/fisiología , Proteostasis/fisiología , Selenoproteínas/metabolismo , Animales , Humanos
6.
EMBO Rep ; 18(11): 1935-1946, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28928140

RESUMEN

Selenoprotein T (SelT) is a recently characterized thioredoxin-like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone-producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum-associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT-membrane protein interactions, we sort keratinocyte-associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A-type OST complex which are depleted after SelT knockdown leading to POMC N-glycosylation defects. This study identifies SelT as a novel subunit of the A-type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Corticotrofos/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Selenoproteínas/genética , Transducción de Señal , Hormona Adrenocorticotrópica/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Corticotrofos/citología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Edición Génica , Regulación de la Expresión Génica , Glicosilación , Hexosiltransferasas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Microsomas/metabolismo , Hipófisis/citología , Hipófisis/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño , Selenoproteínas/antagonistas & inhibidores , Selenoproteínas/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Antioxid Redox Signal ; 24(11): 557-74, 2016 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-26866473

RESUMEN

AIMS: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. RESULTS: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. INNOVATION: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. CONCLUSIONS: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Oxidorreductasas/metabolismo , Enfermedad de Parkinson/metabolismo , Selenoproteínas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotoxinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Selenoproteínas/deficiencia
8.
PLoS One ; 10(3): e0119290, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781313

RESUMEN

Urotensin II (UII) is an evolutionarily conserved neuropeptide initially isolated from teleost fish on the basis of its smooth muscle-contracting activity. Subsequent studies have demonstrated the occurrence of several UII-related peptides (URPs), such that the UII family is now known to include four paralogue genes called UII, URP, URP1 and URP2. These genes probably arose through the two rounds of whole genome duplication that occurred during early vertebrate evolution. URP has been identified both in tetrapods and teleosts. In contrast, URP1 and URP2 have only been observed in ray-finned and cartilaginous fishes, suggesting that both genes were lost in the tetrapod lineage. In the present study, the distribution of urp1 mRNA compared to urp2 mRNA is reported in the central nervous system of zebrafish. In the spinal cord, urp1 and urp2 mRNAs were mainly colocalized in the same cells. These cells were also shown to be GABAergic and express the gene encoding the polycystic kidney disease 2-like 1 (pkd2l1) channel, indicating that they likely correspond to cerebrospinal fluid-contacting neurons. In the hindbrain, urp1-expressing cells were found in the intermediate reticular formation and the glossopharyngeal-vagal motor nerve nuclei. We also showed that synthetic URP1 and URP2 were able to induce intracellular calcium mobilization in human UII receptor (hUT)-transfected CHO cells with similar potencies (pEC50=7.99 and 7.52, respectively) albeit at slightly lower potencies than human UII and mammalian URP (pEC50=9.44 and 8.61, respectively). The functional redundancy of URP1 and URP2 as well as the colocalization of their mRNAs in the spinal cord suggest the robustness of this peptidic system and its physiological importance in zebrafish.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Rombencéfalo/metabolismo , Médula Espinal/metabolismo , Urotensinas/metabolismo , Pez Cebra/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Neuronas/citología , Hormonas Peptídicas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rombencéfalo/citología , Médula Espinal/citología , Urotensinas/genética , Pez Cebra/crecimiento & desarrollo
9.
J Mol Endocrinol ; 52(3): T61-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24740737

RESUMEN

Somatostatin (SS) and urotensin II (UII) are members of two families of structurally related neuropeptides present in all vertebrates. They exert a large array of biological activities that are mediated by two families of G-protein-coupled receptors called SSTR and UTS2R respectively. It is proposed that the two families of peptides as well as those of their receptors probably derive from a single ancestral ligand-receptor pair. This pair had already been duplicated before the emergence of vertebrates to generate one SS peptide with two receptors and one UII peptide with one receptor. Thereafter, each family expanded in the three whole-genome duplications (1R, 2R, and 3R) that occurred during the evolution of vertebrates, whereupon some local duplications and gene losses occurred. Following the 2R event, the vertebrate ancestor is deduced to have possessed three SS (SS1, SS2, and SS5) and six SSTR (SSTR1-6) genes, on the one hand, and four UII (UII, URP, URP1, and URP2) and five UTS2R (UTS2R1-5) genes, on the other hand. In the teleost lineage, all these have been preserved with the exception of SSTR4. Moreover, several additional genes have been gained through the 3R event, such as SS4 and a second copy of the UII, SSTR2, SSTR3, and SSTR5 genes, and through local duplications, such as SS3. In mammals, all the genes of the SSTR family have been preserved, with the exception of SSTR6. In contrast, for the other families, extensive gene losses occurred, as only the SS1, SS2, UII, and URP genes and one UTS2R gene are still present.


Asunto(s)
Evolución Molecular , Receptores Acoplados a Proteínas G/genética , Receptores de Somatostatina/genética , Somatostatina/genética , Urotensinas/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Duplicación de Gen , Humanos , Alineación de Secuencia
10.
J Comp Neurol ; 522(11): 2634-49, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24478001

RESUMEN

Urotensin II (UII) and Urotensin II-related peptide (URP) are structurally related paralog peptides that exert peripheral and central effects. UII binding sites have been partly described in brain, and those of URP have never been reported. We exhaustively compared [(125)I]-UII and -URP binding site distributions in the adult rat brain, and found that they fully overlapped at the regional level. We observed UII/URP binding sites in structures lining ventricles, comprising the sphenoid nucleus and cell rafts scattered on a line joining the fourth ventricle and its lateral recess. After injection of UII and URP in the lateral ventricle, we observed c-Fos-positive cell nuclei in areas close to the fourth ventricle, indicating that these receptors are functional. Different c-Fos-containing cell populations were activated. They were all positive for vimentin and glial fibrillary acidic protein (GFAP), excluding the possibility of an ependymal nature. In conclusion, this study demonstrated that UII and URP binding sites are totally overlapping and that these sites were functional in regions bordering the fourth ventricle. These data support a role for UII/URP at the interface between brain parenchyma and cerebrospinal fluid.


Asunto(s)
Encéfalo/metabolismo , Hormonas Peptídicas/metabolismo , Urotensinas/metabolismo , Animales , Autorradiografía , Sitios de Unión , Cuarto Ventrículo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Radioisótopos de Yodo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Vimentina/metabolismo
11.
Endocrinology ; 154(10): 3796-806, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913443

RESUMEN

Selenoproteins are involved in the regulation of redox status, which affects several cellular processes, including cell survival and homeostasis. Considerable interest has arisen recently concerning the role of selenoproteins in the regulation of glucose metabolism. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein of the endoplasmic reticulum, is present at high levels in human and mouse pancreas as revealed by immunofluorescence and quantitative PCR. Confocal immunohistochemistry studies revealed that SelT is mostly confined to insulin- and somatostatin-producing cells in mouse and human islets. To elucidate the role of SelT in ß-cells, we generated, using a Cre-Lox strategy, a conditional pancreatic ß-cell SelT-knockout C57BL/6J mice (SelT-insKO) in which SelT gene disruption is under the control of the rat insulin promoter Cre gene. Glucose administration revealed that male SelT-insKO mice display impaired glucose tolerance. Although insulin sensitivity was not modified in the mutant mice, the ratio of glucose to insulin was significantly higher in the SelT-insKO mice compared with wild-type littermates, pointing to a deficit in insulin production/secretion in mutant mice. In addition, morphometric analysis showed that islets from SelT-insKO mice were smaller and that their number was significantly increased compared with islets from their wild-type littermates. Finally, we found that SelT is up-regulated by pituitary adenylate cyclase-activating polypeptide (PACAP) in ß-pancreatic cells and that SelT could act by facilitating a feed-forward mechanism to potentiate insulin secretion induced by the neuropeptide. Our findings are the first to show that the PACAP-regulated SelT is localized in pancreatic ß- and δ-cells and is involved in the control of glucose homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Selenoproteínas/metabolismo , Animales , Glucemia , Línea Celular , Cruzamientos Genéticos , Silenciador del Gen , Intolerancia a la Glucosa/patología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Selenoproteínas/antagonistas & inhibidores , Selenoproteínas/genética , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Somatostatina/patología , Técnicas de Cultivo de Tejidos
12.
J Biol Chem ; 288(21): 14936-48, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23564451

RESUMEN

The pituitary adenylate cyclase-activating polypeptide (PACAP) is a trophic factor that promotes neuronal survival and neurite outgrowth. However, the signaling pathways and the transcriptional mechanisms involved are not completely elucidated. Our previous studies aimed at characterizing the transcriptome of PACAP-differentiated PC12 cells revealed an increase in the expression of nuclear factor κB2 (NF-κB2) gene coding for p100/p52 subunit of NF-κB transcription factor. Here, we examined the role of the NF-κB pathway in neuronal differentiation promoted by PACAP. We first showed that PACAP-driven survival and neuritic extension in PC12 cells are inhibited following NF-κB pathway blockade. PACAP stimulated both c-Rel and p52 NF-κB subunit gene expression and nuclear translocation, whereas c-Rel down-regulation inhibited cell survival and neuritogenesis elicited by the neuropeptide. PACAP-induced c-Rel nuclear translocation was inhibited by ERK1/2 and Ca(2+) blockers. Furthermore, the neuropeptide stimulated NF-κB p100 subunit processing into p52, indicative of activation of the NF-κB alternative pathway. Taken together, our data show that PACAP promotes both survival and neuritogenesis in PC12 cells by activating NF-κB pathway, most likely via classical and alternative signaling cascades involving ERK1/2 kinases, Ca(2+), and c-Rel/p52 dimers.


Asunto(s)
Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Neuritas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Supervivencia Celular/fisiología , Proteína Quinasa 3 Activada por Mitógenos/genética , Subunidad p52 de NF-kappa B/genética , Células PC12 , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Proteínas Proto-Oncogénicas c-rel/genética , Ratas
13.
Gen Comp Endocrinol ; 188: 110-7, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23313073

RESUMEN

The present review describes the molecular evolution of two phylogenetically related families of neuropeptides, the urotensin II (UII) and somatatostatin (SS) families. The UII family consists of four paralogous genes called UII, URP, URP1 and URP2 and the SS family is composed of six paralogous genes named SS1, SS2, SS3, SS4, SS5 and SS6. All these paralogs are present in teleosts, while only four of them, UII, URP, SS1 and SS2 are detected in tetrapods. Comparative genomics showed that most of these genes, namely UII, URP, URP1 and URP2 on the one hand and SS1, SS2 and SS5 on the other hand arose through the 2R. In contrast, the teleost-specific 3R had a much more moderate impact since it only concerned the UII and SS1 genes, which once duplicated, generated a second UII copy and SS4, respectively. The two remaining genes, SS3 and SS6, arose through tandem duplications of the SS1 and SS2 genes respectively, probably in the stem lineage of actinopterygians, before the emergence of teleosts. The history of the UII and SS families has also been marked by massive gene lost, both in tetrapods and in teleosts, but only after the 3R in this latter lineage. Finally, ancestral UII and SS genes are thought to have arisen through tandem duplication of a single ancestral gene, largely before the 1R. An important challenge for the future will be to understand the physiological significance of the molecular diversity of these two families.


Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Somatostatina/genética , Urotensinas/genética , Animales , Filogenia , Somatostatina/clasificación , Urotensinas/clasificación
14.
Endocrinology ; 152(11): 4322-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21896670

RESUMEN

Selenoproteins contain the essential trace element selenium whose deficiency leads to major disorders including cancer, male reproductive system failure, or autoimmune thyroid disease. Up to now, 25 selenoprotein-encoding genes were identified in mammals, but the spatiotemporal distribution, regulation, and function of some of these selenium-containing proteins remain poorly documented. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein, is regulated by the trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) in differentiating but not mature adrenomedullary cells. In fact, our analysis revealed that, in rat, SelT is highly expressed in most embryonic structures, and then its levels decreased progressively as these organs develop, to vanish in most adult tissues. In the brain, SelT was abundantly expressed in neural progenitors in various regions such as the cortex and cerebellum but was undetectable in adult nervous cells except rostral migratory-stream astrocytes and Bergmann cells. In contrast, SelT expression was maintained in several adult endocrine tissues such as pituitary, thyroid, or testis. In the pituitary gland, SelT was found in secretory cells of the anterior lobe, whereas in the testis, the selenoprotein was present only in spermatogenic and Leydig cells. Finally, we found that SelT expression is strongly stimulated in liver cells during the regenerative process that occurs after partial hepatectomy. Taken together, these data show that SelT induction is associated with ontogenesis, tissue maturation, and regenerative mechanisms, indicating that this PACAP-regulated selenoprotein may play a crucial role in cell growth and activity in nervous, endocrine, and metabolic tissues.


Asunto(s)
Encéfalo/metabolismo , Hígado/metabolismo , Hipófisis/metabolismo , Selenoproteínas/metabolismo , Testículo/metabolismo , Glándula Tiroides/metabolismo , Animales , Masculino , Células PC12 , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Ratas Wistar , Regeneración/genética , Selenoproteínas/genética
15.
Endocrinology ; 152(6): 2330-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21447629

RESUMEN

The urotensin II (UII) family is currently known to consist of two paralogous peptides, namely UII and UII-related peptide (URP). In contrast to UII, which has been identified in all vertebrate classes so far, URP has only been characterized in tetrapods. We report here the occurrence of two distinct URP genes in teleosts, which we have named URP1 and URP2. Synteny analysis revealed that teleost URP1 and URP2 genes and tetrapod URP genes represent three distinct paralog genes that, together with the UII gene, probably arose from the two rounds of tetraploidization, which took place early in vertebrate evolution. The absence of URP in fish indicates that the corresponding gene has been lost in the teleost lineage, whereas it is likely that both the URP1 and URP2 genes have been lost in the tetrapod lineage. Quantitative RT-PCR analysis revealed that the URP2 gene is mainly expressed in the spinal cord and the brain in adult zebrafish. In situ hybridization experiments showed that in zebrafish embryos, URP2 mRNA-containing cells are located in the floor plate of the neural tube. In adult, URP2-expressing cells occur in close contact with the ventral side of the ependymal canal along the whole spinal cord, whereas in the brain, they are located below the fourth ventricle. These URP-expressing cells may correspond to cerebrospinal fluid-contacting neurons. In conclusion, our study reveals the occurrence of four distinct UII paralogous systems in vertebrates that may exert distinct functions, both in tetrapods and teleosts.


Asunto(s)
Evolución Molecular , Hormonas Peptídicas/genética , Urotensinas/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Familia de Multigenes , Hormonas Peptídicas/metabolismo , Filogenia , Alineación de Secuencia , Urotensinas/metabolismo , Vertebrados/clasificación , Vertebrados/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
16.
Regul Pept ; 165(1): 21-9, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-20600356

RESUMEN

Pheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases. The diagnosis of pheochromocytomas depends mainly upon the demonstration of catecholamine excess by 24-h urinary catecholamines and metanephrines or plasma metanephrines. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions, which are associated with a poor survival rate. The characterization of tissue, circulating or genetic markers is therefore crucial for the management of these tumors. Proteins of the granin family and their derived peptides are present in dense-core secretory vesicles and secreted into the bloodstream, making them useful markers for the identification of neuroendocrine cells and neoplasms. In this context, we will focus here on reviewing the distribution and characterization of granins and their processing products in normal and tumoral chromaffin cells, and their clinical usefulness for the diagnosis and prognosis of pheochromocytomas. It appears that, except SgIII, all members of the granin family i.e. CgA, CgB, SgII, SgIV-SgVII and proSAAS, and most of their derived peptides are present in adrenomedullary chromaffin cells and in pheochromocytes. Moreover, besides the routinely used CgA test assays, other assays have been developed to measure concentrations of tissue and/or circulating granins or their derived peptides in order to detect the occurrence of pheochromocytomas. In most cases, elevated levels of these entities were found, in correlation with tumor occurrence, while rarely discriminating between benign and malignant neoplasms. Nevertheless, measurement of the levels of granins and derived peptides improves the diagnostic sensitivity and may therefore provide a complementary tool for the management of pheochromocytomas. However, the existing data need to be substantiated in larger groups of patients, particularly in the case of malignant disease.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/diagnóstico , Neoplasias de las Glándulas Suprarrenales/patología , Células Cromafines/metabolismo , Células Cromafines/patología , Cromograninas/metabolismo , Feocromocitoma/diagnóstico , Feocromocitoma/patología , Neoplasias de las Glándulas Suprarrenales/metabolismo , Humanos , Feocromocitoma/metabolismo
17.
Endocr Relat Cancer ; 16(1): 281-90, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18948374

RESUMEN

UNLABELLED: The gastroprokinetic agent metoclopramide is known to stimulate catecholamine secretion from pheochromocytomas. The aim of the study was to investigate the mechanism of action of metoclopramide and expression of serotonin type 4 (5-HT(4)) receptors in pheochromocytoma tissues. Tissue explants, obtained from 18 pheochromocytomas including the tumor removed from a 46-year-old female patient who experienced life-threatening hypertension crisis after metoclopramide administration and 17 additional pheochromocytomas (9 benign and 8 malignant) were studied. Cultured pheochromocytoma cells derived from the patient who previously received metoclopramide were incubated with metoclopramide and various 5-HT(4) receptor ligands. In addition, total mRNAs were extracted from all the 18 tumors. Catecholamine- and granin-derived peptide concentrations were measured in pheochromocytoma cell incubation medium by HPLC and radioimmunological assays. In addition, expression of 5-HT(4) receptor mRNAs in the 18 pheochromocytomas was investigated by the use of reverse transcriptase-PCR. RESULTS: Metoclopramide and the 5-HT(4) receptor agonist cisapride were found to activate catecholamine- and granin-derived peptide secretions by cultured tumor cells. Metoclopramide- and cisapride-evoked catecholamine- and granin-derived peptide productions were inhibited by the 5-HT(4) receptor antagonist GR 113808. 5-HT(4) receptor mRNAs were detected in the patient's tumor and the series of 17 additional pheochromocytomas. This study shows that pheochromocytomas express functional 5-HT(4) receptors that are responsible for the stimulatory action of metoclopramide on catecholamine- and granin-derived peptide secretion. All 5-HT(4) receptor agonists must therefore be contraindicated in patients with proven or suspected pheochromocytoma.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Antagonistas de Dopamina/farmacología , Metoclopramida/farmacología , Feocromocitoma/tratamiento farmacológico , Receptores de Serotonina 5-HT4/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal/citología , Médula Suprarrenal/efectos de los fármacos , Catecolaminas/metabolismo , Cromograninas/metabolismo , Cisaprida/farmacología , Contraindicaciones , Domperidona/farmacología , Femenino , Humanos , Persona de Mediana Edad , Feocromocitoma/metabolismo , ARN Mensajero/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agonistas de Receptores de Serotonina/farmacología , Células Tumorales Cultivadas
18.
J Neurochem ; 107(2): 361-74, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18710417

RESUMEN

Urotensin II (UII) and UII-related peptide (URP) are paralog neuropeptides whose existence and distribution in mouse have not yet been investigated. In this study, we showed by HPLC/RIA analysis that the UII-immunoreactive molecule in the mouse brain corresponds to a new UII(17) isoform. Moreover, calcium mobilization assays indicated that UII(17) and URP were equally potent in stimulating UII receptor (UT receptor). Quantitative RT-PCR and in situ hybridization analysis revealed that in the CNS UII and URP mRNAs were predominantly expressed in brainstem and spinal motoneurons. Besides, they were differentially expressed in the medial vestibular nucleus, locus coeruleus and the ventral medulla. In periphery, both mRNAs were expressed in skeletal muscle, testis, vagina, stomach, and gall bladder, whereas only URP mRNA could be detected in the seminal vesicle, heart, colon, and thymus. By contrast, the UT receptor mRNA was widely expressed, and notably, very high amounts of transcript occurred in skeletal muscle and prostate. In the biceps femoris muscle, UII-like immunoreactivity was shown to coexist with synaptophysin in muscle motor end plate regions. Altogether these results suggest that (i) UII and URP may have many redundant biological effects, especially at the neuromuscular junction; (ii) URP may more specifically participate to autonomic, cardiovascular and reproductive functions.


Asunto(s)
Encéfalo/metabolismo , Unión Neuromuscular/metabolismo , Hormonas Peptídicas/metabolismo , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Urotensinas/metabolismo , Animales , Encéfalo/anatomía & histología , Células CHO , Calcio/metabolismo , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Radioinmunoensayo/métodos , Receptores Acoplados a Proteínas G/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Urotensinas/química
19.
Peptides ; 29(5): 820-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18403048

RESUMEN

The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.


Asunto(s)
Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Urotensinas/genética , Pez Cebra , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Alineación de Secuencia , Médula Espinal/citología , Médula Espinal/metabolismo , Distribución Tisular , Urotensinas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Mol Cell Endocrinol ; 286(1-2): 5-17, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18406049

RESUMEN

The present review describes the molecular evolution of the somatostatin family and its relationships with that of the urotensin II family. Most of the somatostatin sequences collected from different vertebrate species can be grouped as the products of at least four loci. The somatostatin 1 (SS1) gene is present in all vertebrate classes from agnathans to mammals. The SS1 gene has given rise to the somatostatin 2 (SS2) gene by a segment/chromosome duplication that is probably the result of a tetraploidization event according to the 2R hypothesis. The somatostatin-related peptide cortistatin, first identified in rodents and human, is the counterpart of SS2 in placental mammals. In fish, the existence of two additional somatostatin genes has been reported. The first gene, which encodes a peptide usually named somatostatin II (SSII), exists in almost all teleost species investigated so far and is thought to have arisen through local duplication of the SS1 gene. The second gene, which has been characterized in only a few teleost species, encodes a peptide also named SSII that exhibits a totally atypical structure. The origin of this gene is currently unknown. Nevertheless, because the two latter genes are clearly paralogous genes, we propose to rename them SS3 and SS4, respectively, in order to clarify the current confusing nomenclature. The urotensin II family consists of two genes, namely the urotensin II (UII) gene and the UII-related peptide (URP) gene. Both UII and URP exhibit limited structural identity to somatostatin so that UII was originally described as a "somatostatin-like peptide". Recent comparative genomics studies have revealed that the SS1 and URP genes, on the one hand, and the SS2 and UII genes, on the other hand, are closely linked on the same chromosomes, thus confirming that the SS1/SS2 and the UII/URP genes belong to the same superfamily. According to these data, it appears that an ancestral somatostatin/urotensin II gene gave rise by local duplication to a somatostatin ancestor and a urotensin II ancestor, whereupon this pair was duplicated (presumably by a segment/chromosome duplication) to give rise to the SS1-UII pair and the SS2-URP pair.


Asunto(s)
Evolución Molecular , Somatostatina/metabolismo , Urotensinas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Neuropéptidos/genética , Neuropéptidos/metabolismo , Péptidos/metabolismo , Somatostatina/genética , Especificidad de la Especie , Urotensinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...