Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504269

RESUMEN

The Parkinson's disease-associated protein kinase PINK1 and ubiquitin ligase Parkin coordinate the ubiquitination of mitochondrial proteins, which marks mitochondria for degradation. Miro1, an atypical GTPase involved in mitochondrial trafficking, is one of the substrates tagged by Parkin after mitochondrial damage. Here, we demonstrate that a small pool of Parkin interacts with Miro1 before mitochondrial damage occurs. This interaction does not require PINK1, does not involve ubiquitination of Miro1 and also does not disturb Miro1 function. However, following mitochondrial damage and PINK1 accumulation, this initial pool of Parkin becomes activated, leading to the ubiquitination and degradation of Miro1. Knockdown of Miro proteins reduces Parkin translocation to mitochondria and suppresses mitophagic removal of mitochondria. Moreover, we demonstrate that Miro1 EF-hand domains control Miro1's ubiquitination and Parkin recruitment to damaged mitochondria, and they protect neurons from glutamate-induced mitophagy. Together, our results suggest that Miro1 functions as a calcium-sensitive docking site for Parkin on mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Mitofagia , Dominios Proteicos , Transporte de Proteínas , Proteolisis , Ratas , Ubiquitinación , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética
2.
Development ; 143(11): 1981-92, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122166

RESUMEN

During early development, neurons undergo complex morphological rearrangements to assemble into neuronal circuits and propagate signals. Rapid growth requires a large quantity of building materials, efficient intracellular transport and also a considerable amount of energy. To produce this energy, the neuron should first generate new mitochondria because the pre-existing mitochondria are unlikely to provide a sufficient acceleration in ATP production. Here, we demonstrate that mitochondrial biogenesis and ATP production are required for axonal growth and neuronal development in cultured rat cortical neurons. We also demonstrate that growth signals activating the CaMKKß, LKB1-STRAD or TAK1 pathways also co-activate the AMPK-PGC-1α-NRF1 axis leading to the generation of new mitochondria to ensure energy for upcoming growth. In conclusion, our results suggest that neurons are capable of signalling for upcoming energy requirements. Earlier activation of mitochondrial biogenesis through these pathways will accelerate the generation of new mitochondria, thereby ensuring energy-producing capability for when other factors for axonal growth are synthesized.


Asunto(s)
Axones/metabolismo , Biogénesis de Organelos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Animales Recién Nacidos , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proliferación Celular , Células Cultivadas , Corteza Cerebral/citología , Metabolismo Energético , Quinasas Quinasa Quinasa PAM/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Neurogénesis , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas Wistar , Factor de Crecimiento Transformador beta/metabolismo
3.
Autophagy ; 10(6): 1105-19, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24879156

RESUMEN

The autophagy protein BECN1/Beclin 1 is known to play a central role in autophagosome formation and maturation. The results presented here demonstrate that BECN1 interacts with the Parkinson disease-related protein PARK2. This interaction does not require PARK2 translocation to mitochondria and occurs mostly in cytosol. However, our results suggest that BECN1 is involved in PARK2 translocation to mitochondria because loss of BECN1 inhibits CCCP- or PINK1 overexpression-induced PARK2 translocation. Our results also demonstrate that the observed PARK2-BECN1 interaction is functionally important. Measurements of the level of MFN2 (mitofusin 2), a PARK2 substrate, demonstrate that depletion of BECN1 prevents PARK2 translocation-induced MFN2 ubiquitination and loss. BECN1 depletion also rescues the MFN2 loss-induced suppression of mitochondrial fusion. In sum, our results demonstrate that BECN1 interacts with PARK2 and regulates PARK2 translocation to mitochondria as well as PARK2-induced mitophagy prior to autophagosome formation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Mitofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Beclina-1 , Transporte Biológico Activo , Células Cultivadas , GTP Fosfohidrolasas , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células PC12 , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
J Cell Sci ; 126(Pt 10): 2187-97, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525002

RESUMEN

Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/ultraestructura , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Proteína Huntingtina , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Tamaño Mitocondrial/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células PC12 , Ratas , Ratas Wistar , Transgenes/genética , Proteínas de Unión al GTP rho/genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
J Cell Sci ; 125(Pt 3): 625-33, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22331352

RESUMEN

Calcium pumping into the endoplasmic reticulum (ER) lumen is thought to be coupled to a countertransport of protons through sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and the members of the ClC family of chloride channels. However, pH in the ER lumen remains neutral, which suggests a mechanism responsible for proton re-entry. We studied whether cation-proton exchangers could act as routes for such a re-entry. ER Ca(2+) uptake was measured in permeabilized immortalized hypothalamic neurons, primary rat cortical neurons and mouse cardiac fibers. Replacement of K(+) in the uptake solution with Na(+) or tetraethylammonium led to a strong inhibition of Ca(2+) uptake in neurons and cardiomyocytes. Furthermore, inhibitors of the potassium-proton exchanger (quinine or propranolol) but not of the sodium-proton exchanger reduced ER Ca(2+) uptake by 56-82%. Externally added nigericin, a potassium-proton exchanger, attenuated the inhibitory effect of propranolol. Inhibitors of small conductance calcium-sensitive K(+) (SK(Ca)) channels (UCL 1684, dequalinium) blocked the uptake of Ca(2+) by the ER in all preparations by 48-94%, whereas inhibitors of other K(+) channels (IK(Ca), BK(Ca) and K(ATP)) had no effect. Fluorescence microscopy and western blot analysis revealed the presence of both SK(Ca) channels and the potassium-proton exchanger leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) in ER in situ and in the purified ER fraction. The data obtained demonstrate that SK(Ca) channels and LETM1 reside in the ER membrane and that their activity is essential for ER Ca(2+) uptake.


Asunto(s)
Retículo Endoplásmico/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Transporte Iónico/efectos de los fármacos , Ratones , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Neuronas/efectos de los fármacos , Nigericina/farmacología , Antiportadores de Potasio-Hidrógeno/antagonistas & inhibidores , Propranolol/farmacología , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores
6.
J Biol Chem ; 284(32): 21379-85, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19542216

RESUMEN

Recent studies indicate that regulation of cellular oxidative capacity through enhancing mitochondrial biogenesis may be beneficial for neuronal recovery and survival in human neurodegenerative disorders. The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been shown to be a master regulator of mitochondrial biogenesis and cellular energy metabolism in muscle and liver. The aim of our study was to establish whether PGC-1alpha and PGC-1beta control mitochondrial density also in neurons and if these coactivators could be up-regulated by deacetylation. The results demonstrate that PGC-1alpha and PGC-1beta control mitochondrial capacity in an additive and independent manner. This effect was observed in all studied subtypes of neurons, in cortical, midbrain, and cerebellar granule neurons. We also observed that endogenous neuronal PGC-1alpha but not PGC-1beta could be activated through its repressor domain by suppressing it. Results demonstrate also that overexpression of SIRT1 deacetylase or suppression of GCN5 acetyltransferase activates transcriptional activity of PGC-1alpha in neurons and increases mitochondrial density. These effects were mediated exclusively via PGC-1alpha, since overexpression of SIRT1 or suppression of GCN5 was ineffective where PGC-1alpha was suppressed by short hairpin RNA. Moreover, the results demonstrate that overexpression of PGC-1beta or PGC-1alpha or activation of the latter by SIRT1 protected neurons from mutant alpha-synuclein- or mutant huntingtin-induced mitochondrial loss. These evidences demonstrate that activation or overexpression of the PGC-1 family of coactivators could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic agents activating PGC-1 would be valuable for treating neurodegenerative diseases in which mitochondrial dysfunction and oxidative damage play an important pathogenic role.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Autofagia , Humanos , Oxígeno/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Wistar , Sirtuina 1 , Sirtuinas/biosíntesis , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA