Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38393033

RESUMEN

The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1ß and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.


Asunto(s)
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Femenino , Ratones , Animales , Rotenona/toxicidad , Ciclooxigenasa 2 , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Fármacos Neuroprotectores/farmacología
2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569745

RESUMEN

P2X7 receptors (P2X7Rs) are ligand-gated ion channels that play a significant role in inflammation and are considered a potential therapeutic target for some inflammatory diseases. We have previously shown that a number of synthetic 1,4-naphthoquinones are capable of blocking P2X7Rs in neuronal and macrophage cells. In the present investigation, we have demonstrated the ability of the tetracyclic quinone-thioglucoside conjugate U-556, derived from 1,4-naphthoquinone thioglucoside, to inhibit ATP-induced Ca2+ influx and YO-PRO-1 dye uptake, which indicates blocking P2X7R in RAW 264.7 macrophages. This process was accompanied by the inhibition of ATP-induced reactive oxygen species production in macrophages, as well as the macrophage survival strengthening under ATP toxic effects. Nevertheless, U-556 had no noticeable antioxidant capacity. Naphthoquinone-thioglucoside conjugate U-556 binding to the extracellular part of the P2X7R was confirmed by SPR analysis, and the kinetic characteristics of this complex formation were established. Computer modeling predicted that U-556 binds the P2X7R allosteric binding site, topographically similar to that of the specific A438079 blocker. The study of biological activity in in vivo experiments shows that tetracylic conjugate significantly reduces inflammation provoked by carrageenan. The data obtained points out that the observed physiological effects of U-556 may be due to its ability to block the functioning of the P2X7R.


Asunto(s)
Naftoquinonas , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Macrófagos/metabolismo , Naftoquinonas/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Adenosina Trifosfato/metabolismo , Tioglucósidos/metabolismo
3.
Mar Drugs ; 21(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36976241

RESUMEN

Purinergic P2X7 receptors (P2X7) have now been proven to play an important role and represent an important therapeutic target in many pathological conditions including neurodegeneration. Here, we investigated the impact of peptides on purinergic signaling in Neuro-2a cells through the P2X7 subtype in in vitro models. We have found that a number of recombinant peptides, analogs of sea anemone Kunitz-type peptides, are able to influence the action of high concentrations of ATP and thereby reduce the toxic effects of ATP. The influx of calcium, as well as the fluorescent dye YO-PRO-1, was significantly suppressed by the studied peptides. Immunofluorescence experiments confirmed that the peptides reduce the P2X7 expression level in neuronal Neuro-2a cells. Two selected active peptides, HCRG1 and HCGS1.10, were found to specifically interact with the extracellular domain of P2X7 and formed stable complexes with the receptor in surface plasmon resonance experiments. The molecular docking approach allowed us to establish the putative binding sites of the most active HCRG1 peptide on the extracellular domain of the P2X7 homotrimer and propose a mechanism for regulating its function. Thus, our work demonstrates the ability of the Kunitz-type peptides to prevent neuronal death by affecting signaling through the P2X7 receptor.


Asunto(s)
Receptores Purinérgicos P2X7 , Anémonas de Mar , Animales , Anémonas de Mar/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química , Adenosina Trifosfato/metabolismo
4.
Mar Drugs ; 21(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36827096

RESUMEN

C-type lectins (CTLs) are a family of carbohydrate-binding proteins that mediate multiple biological events, including adhesion between cells, the turnover of serum glycoproteins, and innate immune system reactions to prospective invaders. Here, we describe the cDNA cloning of lectin from the bivalve Glycymeris yessoensis (GYL), which encodes 161 amino acids and the C-type carbohydrate recognition domain (CRD) with EPN and WND motifs. The deduced amino acid sequence showed similarity to other CTLs. GYL is a glycoprotein containing two N-glycosylation sites per subunit. N-glycans are made up of xylose, mannose, D-glucosamine, 3-O-methylated galactose, D-quinovoses, and 3-O-methylated 6-deoxy-D-glucose. The potential CRD tertiary structure of the GYL adopted CTL-typical long-form double-loop structure and included three disulfide bridges at the bases of the loops. Additionally, when confirming the GYL sequence, eight isoforms of this lectin were identified. This fact indicates the presence of a multigene family of GYL-like C-type lectins in the bivalve G. yessoensis. Using the glycan microarray approach, natural carbohydrate ligands were established, and the glycotope for GYL was reconstructed as "Galß1-4GlcNAcß obligatory containing an additional fragment", like a sulfate group or a methyl group of fucose or N-acetylgalactosamine residues.


Asunto(s)
Bivalvos , Lectinas Tipo C , Animales , Estudios Prospectivos , Lectinas Tipo C/metabolismo , Carbohidratos , Bivalvos/química , Polisacáridos/química , Clonación Molecular
5.
Toxins (Basel) ; 15(1)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36668867

RESUMEN

P2X7 receptors are ligand-gated ion channels activated by ATP and play a significant role in cellular immunity. These receptors are considered as a potential therapeutic target for the treatment of multiple inflammatory diseases. In the present work, using spectrofluorimetry, spectrophotometry, Western blotting and ELISA approaches, the ability of 1,4-naphthoquinone thioglucoside derivatives, compounds U-286 and U-548, to inhibit inflammation induced by ATP/LPS in RAW 264.7 cells via P2X7 receptors was demonstrated. It has been established that the selected compounds were able to inhibit ATP-induced calcium influx and the production of reactive oxygen species, and they also exhibited pronounced antioxidant activity in mouse brain homogenate. In addition, compounds U-286 and U-548 decreased the LPS-induced activity of the COX-2 enzyme, the release of pro-inflammatory cytokines TNF-α and IL-1ß in RAW 264.7 cells, and significantly protected macrophage cells against the toxic effects of ATP and LPS. This study highlights the use of 1,4-naphthoquinones as promising purinergic P2X7 receptor antagonists with anti-inflammatory activity. Based on the data obtained, studied synthetic 1,4-NQs can be considered as potential scaffolds for the development of new anti-inflammatory and analgesic drugs.


Asunto(s)
Naftoquinonas , Ratones , Animales , Células RAW 264.7 , Naftoquinonas/farmacología , Lipopolisacáridos/farmacología , Macrófagos , Antagonistas del Receptor Purinérgico P2X/farmacología , Antiinflamatorios/farmacología , Adenosina Trifosfato/farmacología , Receptores Purinérgicos , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2X7
6.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233004

RESUMEN

The anti-inflammatory effects of the CRG/Ech complex in LPS-induced endotoxemia were investigated in vivo in mice and in vitro in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The results indicated that the CRG/Ech complex suppressed the LPS-induced inflammatory response by reducing the production of ROS and NO in the macrophages. Furthermore, the in vivo experiment indicated that the CRG/Ech complex minimized disorders of the physiological and metabolic processes in mice subjected to LPS intoxication and reduced the levels of proinflammatory cytokines in the mouse serum. The preventive administration of the CRG/Ech complex to mice prevented endotoxin-induced damage in the mouse model of endotoxemia, increased the mice's resistance to LPS, and prevented increases in the levels of proinflammatory cytokines (TNFα). In this work, we showed by the molecular docking that Ech interacted with carrageenan, and that H-donor and H-acceptor bonds are involved in the formation of the complex.


Asunto(s)
Endotoxemia , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carragenina/química , Citocinas/metabolismo , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Endotoxemia/metabolismo , Endotoxinas , Lipopolisacáridos/toxicidad , Ratones , Simulación del Acoplamiento Molecular , Naftoquinonas , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Molecules ; 27(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458631

RESUMEN

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Asunto(s)
Nucleósidos , Hidrolasas Diéster Fosfóricas , Humanos , Ligandos , Nucleósidos/farmacología , Hidrolasas Diéster Fosfóricas/química
8.
Mar Drugs ; 20(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049914

RESUMEN

The structural diversity and unique physicochemical properties of sulphated polysaccharides of red algae carrageenans (CRGs), to a great extent, determine the wide range of their antiviral properties. This work aimed to compare the antiviral activities of different structural types of CRGs: against herpes simplex virus type 1 (HSV-1) and enterovirus (ECHO-1). We found that CRGs significantly increased the resistance of Vero cells to virus infection (preventive effect), directly affected virus particles (virucidal effect), inhibited the attachment and penetration of virus to cells, and were more effective against HSV-1. CRG1 showed the highest virucidal effect on HSV-1 particles with a selective index (SI) of 100. CRG2 exhibited the highest antiviral activity by inhibiting HSV-1 and ECHO-1 plaque formation, with a SI of 110 and 59, respectively, when it was added before virus infection. CRG2 also significantly reduced the attachment of HSV-1 and ECHO-1 to cells compared to other CRGs. It was shown by molecular docking that tetrasaccharides-CRGs are able to bind with the HSV-1 surface glycoprotein, gD, to prevent virus-cell interactions. The revealed differences in the effect of CRGs on different stages of the lifecycle of the viruses are apparently related to the structural features of the investigated compounds.


Asunto(s)
Antivirales/farmacología , Carragenina/farmacología , Rhodophyta , Animales , Antivirales/química , Organismos Acuáticos , Carragenina/química , Chlorocebus aethiops , Enterovirus/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Células Vero/efectos de los fármacos
9.
Fitoterapia ; 157: 105121, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34990769

RESUMEN

We investigated the ability of six prenylated prerocarpans, stilbenoid, and a new dimeric flavonoid, lespebicolin B, from stem bark as well as two 3-O-rutinosides and a mixture of 3-O-ß-D-glucosides of quercetin and kaempferol from flowers of Lespedeza bicolor to inhibit HSV-1 replication in Vero cells. Pretreatment of HSV-1 with polyphenolic compounds (direct virucidal effect) showed that pterocarpans lespedezol A2 (1), (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyldihydrolespedezol A2 (4), and (6aR,11aR,3'R)-dihydrolespedezol A3 (5) significantly inhibited viral replication, with a selective index (SI) ≥10. Compound 4 possessed the lowest 50% - inhibiting concentration (IC50) and the highest SI values (2.6 µM and 27.9, respectively) in this test. (6aR,11aR)-2-Isoprenyldihydrolespedezol A2 (4) also had a moderate effect under simultaneous treatment of Vero cells with the tested compound and virus (IC50 and SI values were 5.86 µM and 12.4, respectively). 3-O-rutinosides of quercetin and kaempferol and a mixture of 3-O-ß-D-glucosides of quercetin and kaempferol (10 and 12) also showed significant virucidal activity, with SI values of 12.5, 14.6, and 98.2, respectively, and IC50 values of 8.6, 12.2, and 3.6, respectively. We also performed a quantitative structure-activity relationship (QSAR) analysis of data on the virucidal activity of polyphenolics with 4 < pIC50 < 6. It was found that the virucidal activity of these compounds depended on both the structure of the aromatic part and the conformation of geranyl and isoprenyl side chains of their molecules. These findings are correlated with the largest value of the principal moment of inertia (pmi) descriptor describing the geometry of molecules.


Asunto(s)
Herpesvirus Humano 1/efectos de los fármacos , Lespedeza/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Simulación por Computador , Flores/química , Herpesvirus Humano 1/fisiología , Concentración 50 Inhibidora , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polifenoles/química , Polifenoles/aislamiento & purificación , Relación Estructura-Actividad Cuantitativa , Espectrometría de Masa por Ionización de Electrospray , Células Vero/efectos de los fármacos
10.
Mar Drugs ; 21(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36662206

RESUMEN

The inhibitor of human α-N-acetylgalactosaminidase (α-NaGalase) was isolated from a water-ethanol extract of the brown algae Costaria costata. Currently, tumor α-NaGalase is considered to be a therapeutic target in the treatment of cancer. According to NMR spectroscopy and mass spectrometric analysis, it is a high-molecular-weight fraction of phlorethols with a degree of polymerization (DP) equaling 11-23 phloroglucinols (CcPh). It was shown that CcPh is a direct inhibitor of α-NaGalases isolated from HuTu 80 and SK-MEL-28 cells (IC50 0.14 ± 0.008 and 0.12 ± 0.004 mg/mL, respectively) and reduces the activity of this enzyme in HuTu 80 and SK-MEL-28 cells up to 50% at concentrations of 15.2 ± 9.5 and 5.7 ± 1.6 µg/mL, respectively. Molecular docking of the putative DP-15 oligophlorethol (P15OPh) and heptaphlorethol (PHPh) with human α-NaGalase (PDB ID 4DO4) showed that this compound forms a complex and interacts directly with the Asp 156 and Asp 217 catalytic residues of the enzyme in question. Thus, brown algae phlorethol CcPh is an effective marine-based natural inhibitor of the α-NaGalase of cancer cells and, therefore, has high therapeutic potential.


Asunto(s)
Adenocarcinoma , Melanoma , Phaeophyceae , Humanos , alfa-N-Acetilgalactosaminidasa , Simulación del Acoplamiento Molecular , Phaeophyceae/química
11.
Mar Drugs ; 19(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34677476

RESUMEN

The Hantaan orthohantavirus (genovariant Amur-AMRV) is a rodent-borne zoonotic virus; it is the causative agent of haemorrhagic fever with renal syndrome in humans. The currently limited therapeutic options require the development of effective anti-orthohantavirus drugs. The ability of native fucoidan from Fucus evanescens (FeF) and its enzymatically prepared high-molecular-weight (FeHMP) and low-molecular-weight (FeLMP) fractions to inhibit different stages of AMRV infection in Vero cells was studied. The structures of derivatives obtained were determined using nuclear magnetic resonance (NMR) spectroscopy. We found that fucoidan and its derivatives exhibited significant antiviral activity by affecting the early stages of the AMRV lifecycle, notably virus attachment and penetration. The FeHMP and FeLMP fractions showed the highest anti-adsorption activity by inhibiting AMRV focus formation, with a selective index (SI) > 110; FeF had an SI of ~70. The FeLMP fraction showed a greater virucidal effect compared with FeF and the FeHMP fraction. It was shown by molecular docking that 2O-sulphated fucotetrasaccharide, a main component of the FeLMP fraction, is able to bind with the AMRV envelope glycoproteins Gn/Gc and with integrin ß3 to prevent virus-cell interactions. The relatively small size of these sites of interactions explains the higher anti-AMRV activity of the FeLMP fraction.


Asunto(s)
Antivirales/farmacología , Orthohantavirus/efectos de los fármacos , Phaeophyceae , Polisacáridos/farmacología , Animales , Antivirales/química , Organismos Acuáticos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Peso Molecular , Polisacáridos/química
12.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576094

RESUMEN

Targeted screening using the MTT cell viability test with a mini-library of natural and synthetic 1,4-naphthoquinones and their derivatives was performed in order to increase the survival of Neuro-2a neuroblastoma cells in in vitro paraquat and 6-hydroxydopamine models of Parkinson's disease. As a result, 10 compounds were selected that could protect neuronal cells from the cytotoxic effects of both paraquat and 6-hydroxydopamine. The five most active compounds at low concentrations were found to significantly protect the activity of nonspecific esterase from the inhibitory effects of neurotoxins, defend cell biomembranes from lytic destruction in the presence of paraquat and 6-hydroxydopamine, and normalize the cell cycle. The protective effects of these compounds are associated with the suppression of oxidative stress, decreased expression of reactive oxygen species and nitric oxide formation in cells and normalization of mitochondrial function, and restoration of the mitochondrial membrane potential altered by neurotoxins. It was suggested that the neuroprotective activity of the studied 1,4-NQs is attributable to their pronounced antioxidant and free radical scavenging activity and their ability to reduce the amount of reactive oxygen species formed by paraquat and 6-hydroxydopamine action on neuronal cells. The significant correlation between the neuroprotective properties of 1,4-naphthoquinones and Quantitative Structure-Activity Relationship descriptors describing the physicochemical properties of these compounds means that the hydrophobicity, polarity, charge, and shape of the molecules can be of decisive importance in determining the biological activity of studied substances.


Asunto(s)
Modelos Biológicos , Naftoquinonas/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Oxidopamina/toxicidad , Paraquat/toxicidad , Animales , Compuestos de Bifenilo/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Neuroprotección/efectos de los fármacos , Óxido Nítrico/biosíntesis , Picratos/química , Relación Estructura-Actividad Cuantitativa , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados
13.
Int J Biol Macromol ; 185: 679-687, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34216666

RESUMEN

Chitosan/fucoidan nanoparticles were created using two fucoidans from the Fucus evanescens algae. One of them was a regular fucoidan obtained for the first time from the alga harvested at the reproductive growth stage, using only standard extraction methods, without additional modifications. Its structure was established via NMR spectroscopy to consist of the repeating →3)-α-L-Fucp-(2,4SO3-)-(1 â†’ 4)-α-L-Fucp-(2SO3-)-(1→ fragment. Such fragment also coustituted 55% of the other fucoidan's structure, however it also included long sequences of α-L-fucopyranose residues sulfated only at C2. The nanoparticles were re-dispersed in water and the influence of fucoidan/chitosan mass ratio on the nanoparticles' size and zeta potential was investigated. 3D models of the regular fucoidan and chitosan's sections were created and their molecular docking was performed, showing that either polymer could occupy the exterior of the complex, depending on their ratio. Thermodynamic parameters of fucoidan-chitosan binding process were accessed, with the results indicating that significant conformational changes of fucoidan and chitosan molecules take place during the interaction, presumably to allow for more effective binding.


Asunto(s)
Quitosano/química , Fucus/química , Polisacáridos/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Simulación del Acoplamiento Molecular , Nanopartículas , Tamaño de la Partícula , Agua/química
14.
Biomedicines ; 9(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063022

RESUMEN

During a search for glycosidase inhibitors among marine natural products, we applied an integrated in vitro and in silico approach to evaluate the potency of some aaptamines and makaluvamines isolated from marine sponges on the hydrolyzing activity of α-N-acetylgalactosaminidase (α-NaGalase) from human cancer cells and the recombinant α-D-galactosidase (α-PsGal) from a marine bacterium Pseudoalteromonas sp. KMM 701. These alkaloids showed no direct inhibitory effect on the cancer α-NaGalase; but isoaaptamine (2), 9-demethylaaptamine (3), damirone B (6), and makaluvamine H (7) reduced the expression of the enzyme in the human colorectal adenocarcinoma cell line DLD-1 at 5 µM. Isoaaptamine (2), 9-demethylaaptamine (3), makaluvamine G (6), and zyzzyanone A (7) are slow-binding irreversible inhibitors of the bacterial α-PsGal with the inactivation rate constants (kinact) 0.12 min-1, 0.092 min-1, 0.079 min-1, and 0.037 min-1, as well as equilibrium inhibition constants (Ki) 2.70 µM, 300 µM, 411 µM, and 105 µM, respectively. Docking analysis revealed that these alkaloids bind in a pocket close to the catalytic amino acid residues Asp451 and Asp516 and form complexes, due to π-π interactions with the Trp308 residue and hydrogen bonds with the Lys449 residue. None of the studied alkaloids formed complexes with the active site of the human α-NaGalase.

15.
Molecules ; 26(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924031

RESUMEN

We carried out a detailed investigation of PL7 alginate lyases across the Zobellia genus. The main findings were obtained using the methods of comparative genomics and spatial structure modeling, as well as a phylogenomic approach. Initially, in order to elucidate the alginolytic potential of Zobellia, we calculated the content of polysaccharide lyase (PL) genes in each genome. The genus-specific PLs were PL1, PL6, PL7 (the most abundant), PL14, PL17, and PL40. We revealed that PL7 belongs to subfamilies 3, 5, and 6. They may be involved in local and horizontal gene transfer and gene duplication processes. Most likely, an individual evolution of PL7 genes promotes the genetic variability of the Alginate Utilization System across Zobellia. Apparently, the PL7 alginate lyases may acquire a sub-functionalization due to diversification between in-paralogs.


Asunto(s)
Flavobacteriaceae/enzimología , Genoma Bacteriano/genética , Genómica , Polisacárido Liasas/genética , Alginatos/química , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Especificidad por Sustrato
16.
Bioorg Med Chem ; 31: 115975, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401207

RESUMEN

The P2X7 receptor (P2X7R) is an ATP-gated ion channel and potential therapeutic target for new drug development. In this study, we synthesized a series of new 1,4-naphthoquinone (1,4-NQ) derivatives and investigated their antagonistic effects against mouse P2X7R. We explored the ability of the tested substances to block ATP-induced Ca2+ influx into mouse Neuro-2a cells and selected the four most effective substances: the 1,4-naphthoquinone thioglucosides U-548 and U-557 and their tetracyclic conjugates U-286 and U-556. Biological analysis of these compounds revealed significant in vitro inhibition of murine P2X7R. This inhibition resulted in marked blockade of ethidium bromide (EtBr) and YO-PRO-1 fluorescent dye uptake, pronounced decreases in ROS and NO production and protection of neuronal cell viability against the toxic action of high ATP concentrations. In silico analysis indicated favorable molecular docking results of these 1,4-NQs, pointing to their potential to bind in an allosteric site located in the extracellular region of P2X7R. These findings suggest compounds U-286, U-548, U-556 and U-557 as potential scaffolds for the design of new P2X7R blockers and drugs effective against neuropathic pain and neurodegenerative diseases.


Asunto(s)
Antineoplásicos/farmacología , Naftoquinonas/farmacología , Neuroblastoma/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ratones , Modelos Moleculares , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Neuroblastoma/metabolismo , Neuroblastoma/patología , Antagonistas del Receptor Purinérgico P2X/síntesis química , Antagonistas del Receptor Purinérgico P2X/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Mar Drugs ; 18(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260299

RESUMEN

Based on 6,7-substituted 2,5,8-trihydroxy-1,4-naphtoquinones (1,4-NQs) derived from sea urchins, five new acetyl-O-glucosides of NQs were prepared. A new method of conjugation of per-O-acetylated 1-mercaptosaccharides with 2-hydroxy-1,4-NQs through a methylene spacer was developed. Methylation of 2-hydroxy group of quinone core of acetylthiomethylglycosides by diazomethane and deacetylation of sugar moiety led to 28 new thiomethylglycosidesof 2-hydroxy- and 2-methoxy-1,4-NQs. The cytotoxic activity of starting 1,4-NQs (13 compounds) and their O- and S-glycoside derivatives (37 compounds) was determined by the MTT method against Neuro-2a mouse neuroblastoma cells. Cytotoxic compounds with EC50 = 2.7-87.0 µM and nontoxic compounds with EC50 > 100 µM were found. Acetylated O- and S-glycosides 1,4-NQs were the most potent, with EC50 = 2.7-16.4 µM. Methylation of the 2-OH group innaphthoquinone core led to a sharp increase in the cytotoxic activity of acetylated thioglycosidesof NQs, which was partially retained for their deacetylated derivatives. Thiomethylglycosides of 2-hydroxy-1,4-NQs with OH and MeO groups in quinone core at positions 6 and 7, resprectively formed a nontoxic set of compounds with EC50 > 100 µM. A quantitative structure-activity relationship (QSAR) model of cytotoxic activity of 22 1,4-NQ derivatives was constructed and tested. Descriptors related to the cytotoxic activity of new 1,4-NQ derivatives were determined. The QSAR model is good at predicting the activity of 1,4-NQ derivatives which are unused for QSAR models and nontoxic derivatives.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Glicósidos/síntesis química , Glicósidos/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Neuroblastoma/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glicósidos/aislamiento & purificación , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Naftoquinonas/aislamiento & purificación , Neuroblastoma/patología , Relación Estructura-Actividad Cuantitativa , Erizos de Mar/metabolismo
18.
Mar Drugs ; 18(11)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167501

RESUMEN

Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes-echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)-to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles. EamB and EamA both showed the highest virucidal activity by inhibiting the HSV-1 plaque formation, with a selectivity index (SI) of 80.6 and 50.3, respectively, and a reduction in HSV-1 attachment to cells (SI of 8.5 and 5.8, respectively). EamA and EamB considerably suppressed the early induction of ROS due to the virus infection. The ability of the tested compounds to directly bind to the surface glycoprotein, gD, of HSV-1 was established in silico. The dock score of EchA, EamA, and EamB was -4.75, -5.09, and -5.19 kcal/mol, respectively, which correlated with the SI of the virucidal action of these compounds and explained their ability to suppress the attachment and penetration of the virus into the cells.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Naftoquinonas/farmacología , Erizos de Mar/metabolismo , Animales , Antivirales/aislamiento & purificación , Chlorocebus aethiops , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/metabolismo , Interacciones Huésped-Patógeno , Simulación del Acoplamiento Molecular , Naftoquinonas/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Ensayo de Placa Viral , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
19.
J Nat Prod ; 83(8): 2320-2329, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32786885

RESUMEN

Hybrid molecules created from different pharmacophores of natural and synthetic equivalents are successfully used in pharmaceutical practice. One promising target for anticancer therapy is tyrosyl-DNA phosphodiesterase 1 (Tdp1) because it can repair DNA lesions caused by DNA-topoisomerase 1 (Top1) inhibitors, resulting in drug resistance. In this study, new hybrid compounds were synthesized by combining the pharmacophoric moiety of a set of natural compounds with inhibitory properties against Tdp1, particularly, phenolic usnic acid and a set of different monoterpenoid fragments. These fragments were connected through a hydrazinothiazole linker. The inhibitory properties of the new compounds mainly depended on the structure of the terpenoid moieties. The two most potent compounds, 9a and 9b, were synthesized from citral and citronellal, which contain acyclic fragments with IC50 values in the range of 10-16 nM. Some synthesized derivatives showed low cytotoxicity against HeLa cells and increased the effect of the Top1 inhibitor topotecan in vitro by three to seven times. These derivatives may be considered as potential agents for the development of anticancer therapies when combined with Top1 inhibitors.


Asunto(s)
Benzofuranos/química , Monoterpenos/química , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Benzofuranos/farmacología , Cristalografía por Rayos X , Células HeLa , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Monoterpenos/farmacología , Análisis Espectral/métodos , Relación Estructura-Actividad
20.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650591

RESUMEN

Marinomonas primoryensis KMM 3633T, extreme living marine bacterium was isolated from a sample of coastal sea ice in the Amursky Bay near Vladivostok, Russia. The goal of our investigation is to study outer membrane channels determining cell permeability. Porin from M. primoryensis KMM 3633T (MpOmp) has been isolated and characterized. Amino acid analysis and whole genome sequencing were the sources of amino acid data of porin, identified as Porin_4 according to the conservative domain searching. The amino acid composition of MpOmp distinguished by high content of acidic amino acids and low content of sulfur-containing amino acids, but there are no tryptophan residues in its molecule. The native MpOmp existed as a trimer. The reconstitution of MpOmp into black lipid membranes demonstrated its ability to form ion channels whose conductivity depends on the electrolyte concentration. The spatial structure of MpOmp had features typical for the classical gram-negative porins. However, the oligomeric structure of isolated MpOmp was distinguished by very low stability: heat-modified monomer was already observed at 30 °C. The data obtained suggest the stabilizing role of lipids in the natural membrane of marine bacteria in the formation of the oligomeric structure of porin.


Asunto(s)
Organismos Acuáticos/química , Proteínas Bacterianas , Marinomonas/química , Porinas , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Porinas/química , Porinas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...