Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005618

RESUMEN

Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources using concentration measurements, robots need to seek out informative sampling locations. For this, domain knowledge needs to be incorporated into their exploration strategy. We achieve this by means of partial differential equations incorporated into a probabilistic gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previously, we presented a potential-field-control approach for navigation based on this map. We build upon this work by considering a more realistic gas dispersion model, now taking into account the mechanism of advection, and dynamics of the gas concentration field. The proposed extension is evaluated through extensive simulations. We find that introducing fluctuations in the wind direction makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed approach can recover the gas source distribution and compete with a systematic sampling strategy. The estimator we present in this work is able to robustly recover source candidates within only a few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the applicability and robustness of robotic swarm exploration in dynamic and challenging environments for tasks such as gas source localization.

2.
Sensors (Basel) ; 23(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37430655

RESUMEN

Automated forest machines are becoming important due to human operators' complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on tree detection to perform scan registration and pose correction using only low-resolution LiDAR sensors (16Ch, 32Ch) or narrow field of view Solid State LiDARs without additional sensory modalities like GPS or IMU. We evaluate our approach on three datasets, including two private and one public dataset, and demonstrate improved navigation accuracy, scan registration, tree localization, and tree diameter estimation compared to current approaches in forestry machine automation. Our results show that the proposed method yields robust scan registration using detected trees, outperforming generalized feature-based registration algorithms like Fast Point Feature Histogram, with an above 3 m reduction in RMSE for the 16Chanel LiDAR sensor. For Solid-State LiDAR the algorithm achieves a similar RMSE of 3.7 m. Additionally, our adaptive pre-processing and heuristic approach to tree detection increased the number of detected trees by 13% compared to the current approach of using fixed radius search parameters for pre-processing. Our automated tree trunk diameter estimation method yields a mean absolute error of 4.3 cm (RSME = 6.5 cm) for the local map and complete trajectory maps.

3.
Front Robot AI ; 9: 916153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405073

RESUMEN

Robots operating with humans in highly dynamic environments need not only react to moving persons and objects but also to anticipate and adhere to patterns of motion of dynamic agents in their environment. Currently, robotic systems use information about dynamics locally, through tracking and predicting motion within their direct perceptual range. This limits robots to reactive response to observed motion and to short-term predictions in their immediate vicinity. In this paper, we explore how maps of dynamics (MoDs) that provide information about motion patterns outside of the direct perceptual range of the robot can be used in motion planning to improve the behaviour of a robot in a dynamic environment. We formulate cost functions for four MoD representations to be used in any optimizing motion planning framework. Further, to evaluate the performance gain through using MoDs in motion planning, we design objective metrics, and we introduce a simulation framework for rapid benchmarking. We find that planners that utilize MoDs waste less time waiting for pedestrians, compared to planners that use geometric information alone. In particular, planners utilizing both intensity (proportion of observations at a grid cell where a dynamic entity was detected) and direction information have better task execution efficiency.

4.
Front Psychol ; 13: 909775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072043

RESUMEN

Students who are deaf or hard-of-hearing (DHH) often show significant difficulties in learning mathematics. Previous studies have reported that students who are DHH lag several years behind in their mathematical development compared to hearing students. As possible reasons, limited learning opportunities due to a lesser incidental exposure to numerical ideas, delays in language and speech development, and further idiosyncratic difficulties of students who are DHH are discussed; however, early mathematical skills and their role in mathematical difficulties of students who are DHH are not explored sufficiently. In this study, we investigate whether students who are DHH differ from hearing students in their ability to enumerate small sets (1-9)-an ability that is associated with mathematical difficulties and their emergence. Based on a study with N = 63 who are DHH and N = 164 hearing students from third to fifth grade attempting 36 tasks, we used eye tracking, the recording of students' eye movements, to qualitatively investigate student enumeration processes. To reduce the effort of qualitative analysis of around 8,000 student enumeration processes (227 students x 36 tasks), we used Artificial Intelligence, in particular, a clustering algorithm, to identify student enumeration processes from the heatmaps of student gaze distributions. Based on the clustering, we found that gaze distributions of students who are DHH and students with normal hearing differed significantly on a group level, indicating differences in enumeration processes, with students who are DHH using advantageous processes (e.g., enumeration "at a glance") more often than hearing students. The results indicate that students who are DHH do not lag behind in small number enumeration as compared to hearing students but, rather, appear to perform better than their hearing peers in small number enumeration processes, as well as when conceptual knowledge about the part-whole relationship is involved. Our study suggests that the mathematical difficulties of students who are DHH are not related to difficulties in the small number enumeration, which offers interesting perspectives for further research.

5.
Front Chem ; 10: 863838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572118

RESUMEN

Detecting chemical compounds using electronic noses is important in many gas sensing related applications. A gas detection system is supposed to indicate a significant event, such as the presence of new chemical compounds or a noteworthy change of concentration levels. Existing gas detection methods typically rely on prior knowledge of target analytes to prepare a dedicated, supervised learning model. However, in some scenarios, such as emergency response, not all the analytes of concern are a priori known and their presence are unlikely to be controlled. In this paper, we take a step towards addressing this issue by proposing an ensemble learning based approach (ELBA) that integrates several one-class classifiers and learns online. The proposed approach is initialized by training several one-class models using clean air only. During the sampling process, the initialized system detects the presence of chemicals, allowing to learn another one-class model and update existing models with self-labelled data. We validated the proposed approach with real-world experiments, in which a mobile robot equipped with an e-nose was remotely controlled to interact with different chemical analytes in an uncontrolled environment. We demonstrated that the ELBA algorithm not only can detect gas exposures but also recognize baseline responses under a suspect short-term sensor drift condition. Depending on the problem setups in practical applications, the present work can be easily hybridized to integrate other supervised learning models when the prior knowledge of target analytes is partially available.

6.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841615

RESUMEN

Ventilation systems are critically important components of many public buildings and workspaces. Proper ventilation is often crucial for preventing accidents, such as explosions in mines and avoiding health issues, for example, through long-term exposure to harmful respirable matter. Validation and maintenance of ventilation systems is thus of key interest for plant operators and authorities. However, methods for ventilation characterization, which allow us to monitor whether the ventilation system in place works as desired, hardly exist. This article addresses the critical challenge of ventilation characterization-measuring and modelling air flow at micro-scales-that is, creating a high-resolution model of wind speed and direction from airflow measurements. Models of the near-surface micro-scale flow fields are not only useful for ventilation characterization, but they also provide critical information for planning energy-efficient paths for aerial robots and many applications in mobile robot olfaction. In this article we propose a heterogeneous measurement system composed of static, continuously sampling sensing nodes, complemented by localized measurements, collected during occasional sensing missions with a mobile robot. We introduce a novel, data-driven, multi-domain airflow modelling algorithm that estimates (1) fields of posterior distributions over wind direction and speed ("ventilation maps", spatial domain); (2) sets of ventilation calendars that capture the evolution of important airflow characteristics at measurement positions (temporal domain); and (3) a frequency domain analysis that can reveal periodic changes of airflow in the environment. The ventilation map and the ventilation calendars make use of an improved estimation pipeline that incorporates a wind sensor model and a transition model to better filter out sporadic, noisy airflow changes. These sudden changes may originate from turbulence or irregular activity in the surveyed environment and can, therefore, disturb modelling of the relevant airflow patterns. We tested the proposed multi-domain airflow modelling approach with simulated data and with experiments in a semi-controlled environment and present results that verify the accuracy of our approach and its sensitivity to different turbulence levels and other disturbances. Finally, we deployed the proposed system in two different real-world industrial environments (foundry halls) with different ventilation regimes for three weeks during full operation. Since airflow ground truth cannot be obtained, we present a qualitative discussion of the generated airflow models with plant operators, who concluded that the computed models accurately depicted the expected airflow patterns and are useful to understand how pollutants spread in the work environment. This analysis may then provide the basis for decisions about corrective actions to avoid long-term exposure of workers to harmful respirable matter.

7.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736489

RESUMEN

Emergency personnel, such as firefighters, bomb technicians, and urban search and rescue specialists, can be exposed to a variety of extreme hazards during the response to natural and human-made disasters. In many of these scenarios, a risk factor is the presence of hazardous airborne chemicals. The recent and rapid advances in robotics and sensor technologies allow emergency responders to deal with such hazards from relatively safe distances. Mobile robots with gas-sensing capabilities allow to convey useful information such as the possible source positions of different chemicals in the emergency area. However, common gas sampling procedures for laboratory use are not applicable due to the complexity of the environment and the need for fast deployment and analysis. In addition, conventional gas identification approaches, based on supervised learning, cannot handle situations when the number and identities of the present chemicals are unknown. For the purpose of emergency response, all the information concluded from the gas detection events during the robot exploration should be delivered in real time. To address these challenges, we developed an online gas-sensing system using an electronic nose. Our system can automatically perform unsupervised learning and update the discrimination model as the robot is exploring a given environment. The online gas discrimination results are further integrated with geometrical information to derive a multi-compound gas spatial distribution map. The proposed system is deployed on a robot built to operate in harsh environments for supporting fire brigades, and is validated in several different real-world experiments of discriminating and mapping multiple chemical compounds in an indoor open environment. Our results show that the proposed system achieves high accuracy in gas discrimination in an online, unsupervised, and computationally efficient manner. The subsequently created gas distribution maps accurately indicate the presence of different chemicals in the environment, which is of practical significance for emergency response.

8.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691174

RESUMEN

In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications.

9.
Sensors (Basel) ; 19(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682827

RESUMEN

This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the 'bout' detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m²) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments.

10.
Sensors (Basel) ; 15(3): 6845-71, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25803707

RESUMEN

The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

11.
Sensors (Basel) ; 14(10): 17952-80, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25264956

RESUMEN

This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.


Asunto(s)
Vestuario , Interpretación de Imagen Asistida por Computador , Vehículos a Motor , Grabación en Video , Algoritmos , Humanos , Dispositivos Ópticos , Reconocimiento de Normas Patrones Automatizadas , Seguridad
12.
Sensors (Basel) ; 14(9): 17331-52, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232911

RESUMEN

In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Gases/análisis , Robótica/instrumentación , Robótica/métodos , Programas Informáticos , Interfaz Usuario-Computador , Mezclas Complejas/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Movimiento (Física) , Integración de Sistemas
13.
Sensors (Basel) ; 13(6): 7323-44, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23736853

RESUMEN

Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time.


Asunto(s)
Algoritmos , Gases/química , 2-Propanol/análisis , 2-Propanol/química , Etanol/química , Filtración , Metales/química , Óxidos/química
14.
Sensors (Basel) ; 12(12): 16404-19, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23443385

RESUMEN

We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets.


Asunto(s)
Gases/aislamiento & purificación , Metales/química , Óxidos/química , Humanos
15.
Front Neuroeng ; 4: 20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22319493

RESUMEN

Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...