Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 38, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750427

RESUMEN

BACKGROUND: The accuracy of genomic prediction is partly determined by the size of the reference population. In Atlantic salmon breeding programs, four parallel populations often exist, thus offering the opportunity to increase the size of the reference set by combining these populations. By allowing a reduction in the number of records per population, multi-population prediction can potentially reduce cost and welfare issues related to the recording of traits, particularly for diseases. In this study, we evaluated the accuracy of multi- and across-population prediction of breeding values for resistance to amoebic gill disease (AGD) using all single nucleotide polymorphisms (SNPs) on a 55K chip or a selected subset of SNPs based on the signs of allele substitution effect estimates across populations, using both linear and nonlinear genomic prediction (GP) models in Atlantic salmon populations. In addition, we investigated genetic distance, genetic correlation estimated based on genomic relationships, and persistency of linkage disequilibrium (LD) phase across these populations. RESULTS: The genetic distance between populations ranged from 0.03 to 0.07, while the genetic correlation ranged from 0.19 to 0.99. Nonetheless, compared to within-population prediction, there was limited or no impact of combining populations for multi-population prediction across the various models used or when using the selected subset of SNPs. The estimates of across-population prediction accuracy were low and to some extent proportional to the genetic correlation estimates. The persistency of LD phase between adjacent markers across populations using all SNP data ranged from 0.51 to 0.65, indicating that LD is poorly conserved across the studied populations. CONCLUSIONS: Our results show that a high genetic correlation and a high genetic relationship between populations do not guarantee a higher prediction accuracy from multi-population genomic prediction in Atlantic salmon.


Asunto(s)
Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Salmo salar , Animales , Salmo salar/genética , Genómica/métodos , Enfermedades de los Peces/genética , Genética de Población/métodos , Modelos Genéticos , Cruzamiento/métodos , Genoma , Resistencia a la Enfermedad/genética
2.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504717

RESUMEN

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

3.
Front Genet ; 11: 573265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329713

RESUMEN

In selective breeding programs for Atlantic salmon, test fish are slaughtered at an average body weight where growth rate and carcass traits as filet fat (F F), filet pigment (F P) and visceral fat index (F F) are recorded. The objective of this study was to obtain estimates of genetic correlations between growth rate (GR), and the three carcass quality traits when fish from the same 206 families (offspring of 120 sires and 206 dams from 2 year-classes) were recorded both at the same age (SA) and about the same body weight (SW). In the SW group, the largest fish were slaughtered at five different slaughter events and the remaining fish at the sixth slaughter event over 6 months. Estimates of genetic parameters for the traits were obtained from a Bayesian multivariate model for (potentially) truncated Gaussian traits through a Gibbs sampler procedure in which phantom GR values were obtained for the unslaughtered, and thus censored SW group fish at each slaughter event. The heritability estimates for the same trait in each group was similar; about 0.2 for FF, 0.15 for FP and 0.35 for VF and GR. The genetic correlation between the same traits in the two groups was high for growth rate (0.91 ± 0.05) visceral index (0.86 ± 0.05), medium for filet fat (0.45 ± 0.17) and low for filet pigment (0.13 ± 0.27). Within the two groups, the genetic correlation between growth rate and filet fat changed from positive (0.59 ± 0.14) for the SA group to negative (-0.45 ± 0.17) for the SW group, while the genetic correlation between growth rate and filet pigment changed from negative (-0.33 ± 0.22) for the SA group to positive (0.62 ± 0.16) for the SW group. The genetic correlation of growth rate with FF and FP is sensitive to whether the latter traits are measured at the same age or the same body weight. The results indicate that selection for increased growth rate is not expected to have a detrimental effect on the quality traits if increased growth potential is realized through a reduced production time.

4.
Sci Rep ; 10(1): 20571, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239674

RESUMEN

White spot syndrome virus (WSSV) causes major worldwide losses in shrimp aquaculture. The development of resistant shrimp populations is an attractive option for management of the disease. However, heritability for WSSV resistance is generally low and genetic improvement by conventional selection has been slow. This study was designed to determine the power and accuracy of genomic selection to improve WSSV resistance in Litopenaeus vannamei. Shrimp were experimentally challenged with WSSV and resistance was evaluated as dead or alive (DOA) 23 days after infestation. All shrimp in the challenge test were genotyped for 18,643 single nucleotide polymorphisms. Breeding candidates (G0) were ranked on genomic breeding values for WSSV resistance. Two G1 populations were produced, one from G0 breeders with high and the other with low estimated breeding values. A third population was produced from "random" mating of parent stock. The average survival was 25% in the low, 38% in the random and 51% in the high-genomic breeding value groups. Genomic heritability for DOA (0.41 in G1) was high for this type of trait. The realised genetic gain and high heritability clearly demonstrates large potential for further genetic improvement of WSSV resistance in the evaluated L. vannamei population using genomic selection.


Asunto(s)
Resistencia a la Enfermedad/genética , Penaeidae/genética , Virus del Síndrome de la Mancha Blanca 1/genética , Animales , Acuicultura/métodos , Genómica , Genotipo , Polimorfismo de Nucleótido Simple/genética , Selección Artificial/genética , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
5.
Field Crops Res ; 255: 107896, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32943810

RESUMEN

There is a well-established negative relationship between the yield and the concentration of protein in the mature wheat grain. However, some wheat genotypes consistently deviate from this relationship, a phenomenon known as Grain Protein Deviation (GPD). Positive GPD is therefore of considerable interest in relation to reducing the requirement for nitrogen fertilization for producing wheat for breadmaking. We have carried out two sets of field experiments on multiple sites in South East England. The first set comprised 11 field trials of 6 cultivars grown over three years (2008-2011) and the second comprised 9 field trials of 40 genotypes grown over two years (2015-2017) and 5 field trials of 30 genotypes grown in a single year (2017-2018). All trials comprised three replicate randomized plots of each genotype and nutrient regime. These studies showed strong genetic variation in GPD, which also differed in stability between genotypes, with cultivars bred in the UK generally having higher GPD and higher stability than those bred in other European countries. The heritability of GPD was estimated as 0.44, based on data from the field trials of 30 and 40 genotypes. The largest component contributing to the genetic variance was genotype (0.30), with a smaller contribution of the interaction between genotype and year/site (0.11) and a small (but statistically significant) contribution of nitrogen level. These studies suggest that selection for GPD is a viable target for breeders.

6.
Sci Rep ; 10(1): 6435, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296114

RESUMEN

Amoebic gill disease (AGD) is a parasitic disease caused by the amoeba Paramoeba perurans, which colonizes the gill tissues and causes distress for the host. AGD can cause high morbidity and mortalities in salmonid and non-salmonid fish species. To understand the genetic basis of AGD and improve health status of farmed A. salmon, a population of ~ 6,100 individuals belonging to 150 full-sib families was monitored for development of AGD in the sea of Ireland. The population was followed for two rounds of AGD infections, and fish were gill scored to identify severity of disease in first (N = 3,663) and the second (N = 3,511) infection with freshwater treatment after the first gill-scoring. A subset of this gill-scored population (N = 1,141) from 119 full-sib families were genotyped with 57,184 SNPs using custom-made Affymetrix SNP-chip. GWAS analyses were performed which resulted in five significantly associated SNP variants distributed over chromosome 1, 2 and 5. Three candidate genes; c4, tnxb and slc44a4 were found within QTL region of chromosome 2. The tnxb and c4 genes are known to be a part of innate immune system, and may play a role in resistance to AGD. The gain in prediction accuracy obtained by involving genomic information was 9-17% higher than using traditional pedigree information.


Asunto(s)
Amebiasis/veterinaria , Resistencia a la Enfermedad/genética , Enfermedades de los Peces/genética , Sitios de Carácter Cuantitativo , Salmo salar/parasitología , Amebiasis/diagnóstico , Amebiasis/genética , Amebiasis/inmunología , Amoeba/aislamiento & purificación , Animales , Mapeo Cromosómico , Estudios de Factibilidad , Femenino , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Proteínas de Peces/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Branquias/parasitología , Masculino , Océanos y Mares , Linaje , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodos , Índice de Severidad de la Enfermedad
7.
J Anim Breed Genet ; 137(4): 384-394, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32236991

RESUMEN

This study tested and compared different implementation strategies for genomic selection for Norwegian White Sheep, aiming to increase genetic gain for maternal traits. These strategies were evaluated for their genetic gain ingrowth, carcass and maternal traits, total genetic gain, a weighted sum of the gain in each trait and rates of inbreeding through a full-scale stochastic simulation. Results showed genomic selection schemes to increase genetic gain for maternal traits but reduced genetic gain for other traits. This could also be obtained by selecting rams for artificial selection at a higher age. Implementation of genomic selection in the current breeding structure increased genetic gain for maternal traits up to 57%, outcompeted by reducing the generation interval for artificial insemination rams from current 3 to 2 years. Then, total genetic gain for maternal traits increased by 65%-77% and total genetic gain by18%-20%, but at increased rates of inbreeding.


Asunto(s)
Cruzamiento/métodos , Genómica , Selección Genética , Oveja Doméstica/genética , Animales , Simulación por Computador , Femenino , Genoma , Endogamia , Masculino , Modelos Genéticos , Fenotipo , Oveja Doméstica/crecimiento & desarrollo
8.
Genet Sel Evol ; 49(1): 33, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270100

RESUMEN

BACKGROUND: In farmed Atlantic salmon, heritability for uniformity of body weight is low, indicating that the accuracy of estimated breeding values (EBV) may be low. The use of genomic information could be one way to increase accuracy and, hence, obtain greater response to selection. Genomic information can be merged with pedigree information to construct a combined relationship matrix ([Formula: see text] matrix) for a single-step genomic evaluation (ssGBLUP), allowing realized relationships of the genotyped animals to be exploited, in addition to numerator pedigree relationships ([Formula: see text] matrix). We compared the predictive ability of EBV for uniformity of body weight in Atlantic salmon, when implementing either the [Formula: see text] or [Formula: see text] matrix in the genetic evaluation. We used double hierarchical generalized linear models (DHGLM) based either on a sire-dam (sire-dam DHGLM) or an animal model (animal DHGLM) for both body weight and its uniformity. RESULTS: With the animal DHGLM, the use of [Formula: see text] instead of [Formula: see text] significantly increased the correlation between the predicted EBV and adjusted phenotypes, which is a measure of predictive ability, for both body weight and its uniformity (41.1 to 78.1%). When log-transformed body weights were used to account for a scale effect, the use of [Formula: see text] instead of [Formula: see text] produced a small and non-significant increase (1.3 to 13.9%) in predictive ability. The sire-dam DHGLM had lower predictive ability for uniformity compared to the animal DHGLM. CONCLUSIONS: Use of the combined numerator and genomic relationship matrix ([Formula: see text]) significantly increased the predictive ability of EBV for uniformity when using the animal DHGLM for untransformed body weight. The increase was only minor when using log-transformed body weights, which may be due to the lower heritability of scaled uniformity, the lower genetic correlation of transformed body weight with its uniformity compared to the untransformed traits, and the small number of genotyped animals in the reference population. This study shows that ssGBLUP increases the accuracy of EBV for uniformity of body weight and is expected to increase response to selection in uniformity.


Asunto(s)
Peso Corporal/genética , Cruzamiento/métodos , Estudio de Asociación del Genoma Completo/métodos , Linaje , Salmo salar/genética , Algoritmos , Animales , Femenino , Aptitud Genética , Masculino , Salmo salar/crecimiento & desarrollo
9.
PLoS One ; 10(8): e0135133, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267268

RESUMEN

Rainbow trout is farmed globally under diverse uncontrollable environments. Fish with low macroenvironmental sensitivity (ES) of growth is important to thrive and grow under these uncontrollable environments. The ES may evolve as a correlated response to selection for growth in one environment when the genetic correlation between ES and growth is nonzero. The aims of this study were to quantify additive genetic variance for ES of body weight (BW), defined as the slope of reaction norm across breeding environment (BE) and production environment (PE), and to estimate the genetic correlation (rg(int, sl)) between BW and ES. To estimate heritable variance of ES, the coheritability of ES was derived using selection index theory. The BW records from 43,040 rainbow trout performing either in freshwater or seawater were analysed using a reaction norm model. High additive genetic variance for ES (9584) was observed, inferring that genetic changes in ES can be expected. The coheritability for ES was either -0.06 (intercept at PE) or -0.08 (intercept at BE), suggesting that BW observation in either PE or BE results in low accuracy of selection for ES. Yet, the rg(int, sl) was negative (-0.41 to -0.33) indicating that selection for BW in one environment is expected to result in more sensitive fish. To avoid an increase of ES while selecting for BW, it is possible to have equal genetic gain in BW in both environments so that ES is maintained stable.


Asunto(s)
Peso Corporal/genética , Interacción Gen-Ambiente , Trucha/genética , Animales , Ecosistema , Variación Genética , Selección Genética , Trucha/crecimiento & desarrollo
10.
Genet Sel Evol ; 47: 46, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25986847

RESUMEN

BACKGROUND: When rainbow trout from a single breeding program are introduced into various production environments, genotype-by-environment (GxE) interaction may occur. Although growth and its uniformity are two of the most important traits for trout producers worldwide, GxE interaction on uniformity of growth has not been studied. Our objectives were to quantify the genetic variance in body weight (BW) and its uniformity and the genetic correlation (rg) between these traits, and to investigate the degree of GxE interaction on uniformity of BW in breeding (BE) and production (PE) environments using double hierarchical generalized linear models. Log-transformed data were also used to investigate whether the genetic variance in uniformity of BW, GxE interaction on uniformity of BW, and rg between BW and its uniformity were influenced by a scale effect. RESULTS: Although heritability estimates for uniformity of BW were low and of similar magnitude in BE (0.014) and PE (0.012), the corresponding coefficients of genetic variation reached 19 and 21%, which indicated a high potential for response to selection. The genetic re-ranking for uniformity of BW (rg = 0.56) between BE and PE was moderate but greater after log-transformation, as expressed by the low rg (-0.08) between uniformity in BE and PE, which indicated independent genetic rankings for uniformity in the two environments when the scale effect was accounted for. The rg between BW and its uniformity were 0.30 for BE and 0.79 for PE but with log-transformed BW, these values switched to -0.83 and -0.62, respectively. CONCLUSIONS: Genetic variance exists for uniformity of BW in both environments but its low heritability implies that a large number of relatives are needed to reach even moderate accuracy of selection. GxE interaction on uniformity is present for both environments and sib-testing in PE is recommended when the aim is to improve uniformity across environments. Positive and negative rg between BW and its uniformity estimated with original and log-transformed BW data, respectively, indicate that increased BW is genetically associated with increased variance in BW but with a decrease in the coefficient of variation. Thus, the scale effect substantially influences the genetic parameters of uniformity, especially the sign and magnitude of its rg.


Asunto(s)
Peso Corporal/genética , Interacción Gen-Ambiente , Variación Genética , Oncorhynchus mykiss/genética , Animales , Oncorhynchus mykiss/crecimiento & desarrollo , Fenotipo
11.
Genet Sel Evol ; 45: 39, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24127852

RESUMEN

BACKGROUND: Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation. METHODS: A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied. RESULTS: Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain. CONCLUSIONS: A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.


Asunto(s)
Acuicultura/métodos , Marcadores Genéticos , Salmón/genética , Selección Genética , Algoritmos , Animales , Femenino , Genoma , Genotipo , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
12.
Genet Sel Evol ; 45: 8, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23531148

RESUMEN

BACKGROUND: Outbreaks of infectious pancreatic necrosis (IPN) in Atlantic salmon can result in reduced growth rates in a fraction of the surviving fish (runts). Genetic and environmental variation also affects growth rates within different categories of healthy animals and runts, which complicates identification of runts. Mixture models are commonly used to identify the underlying structures in such data, and the aim of this study was to develop Bayesian mixture models for the genetic analysis of health status (runt/healthy) of surviving fish from an IPN outbreak. METHODS: Five statistical models were tested on data consisting of 10 972 fish that died and 3959 survivors with recorded growth data. The most complex models (4 and 5) were multivariate normal-binary mixture models including growth, sexual maturity and field survival traits. Growth rate and liability of sexual maturation were treated as two-component normal mixtures, assuming phenotypes originated from two potentially overlapping distributions, (runt/normal). Runt status was an unobserved binary trait. These models were compared to mixture models with fewer traits (Models 2 and 3) and a classical linear animal model for growth (Model 1). RESULTS: Assuming growth as a mixture trait improved the predictive ability of the statistical model considerably (Model 2 vs. 1). The final models (4 and 5) yielded the following results: estimated (underlying) heritabilities were moderate for growth in healthy fish (0.32 ± 0.04 and 0.35 ± 0.05), runt status (0.39 ± 0.07 and 0.36 ± 0.08) and sexual maturation (0.33 ± 0.05), and high for field survival (0.47 ± 0.03 and 0.48 ± 0.03). Growth in healthy animals, runt status and survival showed consistent favourable genetic associations. Sexual maturation showed an unfavourable non-significant genetic correlation with runt status, but favourable genetic correlations with other traits. The estimated fraction of healthy fish was 81-85%. The estimated breeding values for runt status and (normal) growth were consistent for the most complex models (4 and 5), but showed imperfect correlations with estimated breeding values from the simpler models. CONCLUSIONS: Modelling growth in IPN survivors as a mixture trait improved the predictive ability of the model compared with a classical linear model. The results indicated considerable genetic variation in health status among survivors. Mixture modelling may be useful for the genetic analysis of diseases detected mainly through indicator traits.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/fisiopatología , Virus de la Necrosis Pancreática Infecciosa/fisiología , Salmo salar , Maduración Sexual , Animales , Infecciones por Birnaviridae/mortalidad , Infecciones por Birnaviridae/fisiopatología , Infecciones por Birnaviridae/virología , Cruzamiento , Femenino , Enfermedades de los Peces/genética , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Masculino , Modelos Estadísticos , Fenotipo , Carácter Cuantitativo Heredable , Salmo salar/genética , Salmo salar/crecimiento & desarrollo , Salmo salar/virología
13.
Genet Sel Evol ; 41: 30, 2009 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-19296859

RESUMEN

The combination of a sire model and a random regression term describing genotype by environment interactions may lead to biased estimates of genetic variance components because of heterogeneous residual variance. In order to test different models, simulated data with genotype by environment interactions, and dairy cattle data assumed to contain such interactions, were analyzed. Two animal models were compared to four sire models. Models differed in their ability to handle heterogeneous variance from different sources. Including an individual effect with a (co)variance matrix restricted to three times the sire (co)variance matrix permitted the modeling of the additive genetic variance not covered by the sire effect. This made the ability of sire models to handle heterogeneous genetic variance approximately equivalent to that of animal models. When residual variance was heterogeneous, a different approach to account for the heterogeneity of variance was needed, for example when using dairy cattle data in order to prevent overestimation of genetic heterogeneity of variance. Including environmental classes can be used to account for heterogeneous residual variance.


Asunto(s)
Bovinos/genética , Ambiente , Modelos Genéticos , Animales , Cruzamiento , Bovinos/fisiología , Simulación por Computador , Industria Lechera , Femenino , Impresión Genómica , Genotipo , Masculino , Análisis de Regresión
14.
Genetics ; 179(3): 1539-46, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18562653

RESUMEN

Genotype-by-environment interactions for production traits in dairy cattle have often been observed, while QTL analyses have focused on detecting genes with general effects on production traits. In this study, a QTL search for genes with environmental interaction for the traits milk yield, protein yield, and fat yield were performed on Bos taurus autosome 6 (BTA6), also including information about the previously investigated candidate genes ABCG2 and OPN. The animals in the study were Norwegian Red. Eighteen grandsires and 716 sires were genotyped for 362 markers on BTA6. Every marker bracket was regarded as a putative QTL position. The effects of the candidate genes and the putative QTL were modeled as a regression on an environmental parameter (herd year), which is based on the predicted herd-year effect for the trait. Two QTL were found to have environmentally dependent effects on milk yield. These QTL were located 3.6 cM upstream and 9.1 cM downstream from ABCG2. No environmentally dependent QTL was found to significantly affect protein or fat yield.


Asunto(s)
Bovinos/genética , Cromosomas/genética , Ambiente , Leche/metabolismo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Animales , Bases de Datos Genéticas , Haplotipos , Funciones de Verosimilitud , Proteínas de la Leche/metabolismo , Modelos Genéticos
15.
Genet Sel Evol ; 39(2): 105-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17306196

RESUMEN

Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.


Asunto(s)
Ambiente , Modelos Genéticos , Sitios de Carácter Cuantitativo/genética , Alelos , Animales , Cruzamientos Genéticos , Femenino , Genotipo , Masculino , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...