Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 527(1): 282-296, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076594

RESUMEN

The accessory optic system (AOS) detects retinal image slip and reports it to the oculomotor system for reflexive image stabilization. Here, we characterize two Cre lines that permit genetic access to AOS circuits responding to vertical motion. The first (Pcdh9-Cre) labels only one of the four subtypes of ON direction-selective retinal ganglion cells (ON-DS RGCs), those preferring ventral retinal motion. Their axons diverge from the optic tract just behind the chiasm and selectively innervate the medial terminal nucleus (MTN) of the AOS. Unlike most RGC subtypes examined, they survive after optic nerve crush. The second Cre-driver line (Pdzk1ip1-Cre) labels postsynaptic neurons in the MTN. These project predominantly to the other major terminal nucleus of the AOS, the nucleus of the optic tract (NOT). We find that the transmembrane protein semaphorin 6A (Sema6A) is required for the formation of axonal projections from the MTN to the NOT, just as it is for the retinal innervation of the MTN. These new tools permit manipulation of specific circuits in the AOS and show that Sema6A is required for establishing AOS connections in multiple locations.


Asunto(s)
Percepción de Movimiento/fisiología , Células Ganglionares de la Retina/fisiología , Semaforinas/metabolismo , Vías Visuales/fisiología , Animales , Ratones , Ratones Transgénicos , Tracto Óptico/fisiología
2.
Nat Neurosci ; 17(9): 1190-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086610

RESUMEN

Age-related decreases in neural function result in part from alterations in synapses. To identify molecular defects that lead to such changes, we focused on the outer retina, in which synapses are markedly altered in old rodents and humans. We found that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate this process. In old mice, synaptic remodeling was accompanied by specific decreases in the levels of total LKB1 and active (phosphorylated) AMPK. In the absence of either kinase, young adult mice developed retinal defects similar to those that occurred in old wild-type animals. LKB1 and AMPK function in rod photoreceptors where their loss leads to aberrant axonal retraction, the extension of postsynaptic dendrites and the formation of ectopic synapses. Conversely, increasing AMPK activity genetically or pharmacologically attenuates and may reverse age-related synaptic alterations. Together, these results identify molecular determinants of age-related synaptic remodeling and suggest strategies for attenuating these changes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Envejecimiento/fisiología , Proteínas Serina-Treonina Quinasas/genética , Segmento Externo de la Célula en Bastón/patología , Segmento Externo de la Célula en Bastón/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/patología , Células Amacrinas/patología , Células Amacrinas/fisiología , Animales , Electrorretinografía , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Bipolares de la Retina/patología , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/fisiología , Especificidad por Sustrato , Sinapsis/patología , Sinapsis/fisiología
3.
Proc Natl Acad Sci U S A ; 111(3): 1138-43, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395778

RESUMEN

Axons develop in a series of steps, beginning with specification, outgrowth, and arborization, and terminating with formation and maturation of presynaptic specializations. We found previously that the SAD-A and SAD-B kinases are required for axon specification and arborization in subsets of mouse neurons. Here, we show that following these steps, SAD kinases become localized to synaptic sites and are required within presynaptic cells for structural and functional maturation of synapses in both peripheral and central nervous systems. Deleting SADs from sensory neurons can perturb either axonal arborization or nerve terminal maturation, depending on the stage of deletion. Thus, a single pair of kinases plays multiple, sequential roles in axonal differentiation.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Terminaciones Nerviosas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Alelos , Animales , Diferenciación Celular , Electrofisiología , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Sinapsis/fisiología
4.
Proc Natl Acad Sci U S A ; 110(48): 19450-5, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218567

RESUMEN

Liver kinase b1 (Lkb1) protein kinase activity regulates cell growth and cell polarity. Here, we show Lkb1 is essential for maintaining a balance between mitotic and postmitotic cell fates in development of the mammalian skeleton. In this process, Lkb1 activity controls the progression of mitotic chondrocytes to a mature, postmitotic hypertrophic fate. Loss of this Lkb1-dependent switch leads to a dramatic expansion of immature chondrocytes and formation of enchondroma-like tumors. Pathway analysis points to a mammalian target of rapamycin complex 1-dependent mechanism that can be partially suppressed by rapamycin treatment. These findings highlight a critical requirement for integration of mammalian target of rapamycin activity into developmental decision-making during mammalian skeletogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Condrocitos/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP , Análisis de Varianza , Animales , Bromodesoxiuridina , Técnicas Histológicas , Hibridación in Situ , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Compuestos de Fenilurea , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(34): 13857-62, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23922392

RESUMEN

The mammalian target of rapamycin (mTOR) plays an important role in controlling islet ß-cell function. However, the underlying molecular mechanisms remain poorly elucidated. Synapses of amphids defective kinase-A (SAD-A) is a 5' adenosine monophosphate-activated protein kinase-related protein kinase that is exclusively expressed in pancreas and brain. In this study, we investigated a role of the kinase in regulating pancreatic ß-cell morphology and function as a mediator of mTOR complex 1 (mTORC1) signaling. We show that global SAD-A deletion leads to defective glucose-stimulated insulin secretion and petite islets, which are reminiscent of the defects in mice with global deletion of ribosomal protein S6 kinase 1, a downstream target of mTORC1. Consistent with these findings, selective deletion of SAD-A in pancreas decreased islet ß-cell size, whereas SAD-A overexpression significantly increased the size of mouse insulinomas cell lines ß-cells. In direct support of SAD-A as a unique mediator of mTORC1 signaling in islet ß-cells, we demonstrate that glucose dramatically stimulated SAD-A protein translation in isolated mouse islets, which was potently inhibited by rapamycin, an inhibitor of mTORC1. Moreover, the 5'-untranslated region of SAD-A mRNA is highly structured and requires mTORC1 signaling for its translation initiation. Together, these findings identified SAD-A as a unique pancreas-specific effector protein of mTORC1 signaling.


Asunto(s)
Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/citología , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Tamaño de la Célula , Células Secretoras de Insulina/metabolismo , Luciferasas , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Estadísticas no Paramétricas
6.
Neuron ; 79(1): 39-53, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23790753

RESUMEN

Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.


Asunto(s)
Axones/metabolismo , Neurotrofina 3/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP , Animales , Polaridad Celular/fisiología , Corteza Cerebral/metabolismo , Células HeLa , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Receptor trkC/metabolismo
7.
Mol Cell Biol ; 33(13): 2527-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23629625

RESUMEN

Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic ß cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet ß cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet ß cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet ß cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet ß cells.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Glucosa/farmacología , Intolerancia a la Glucosa/genética , Incretinas/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Páncreas/metabolismo , Páncreas/fisiopatología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Treonina/metabolismo
8.
Mol Cell Biol ; 31(6): 1145-59, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220515

RESUMEN

Protein quality control is a balance between chaperone-assisted folding and removal of misfolded proteins from the endoplasmic reticulum (ER). Cell-based assays have been used to identify key players of the dislocation machinery, including members of the Derlin family. We generated conditional knockout mice to examine the in vivo role of Derlin-2, a component that nucleates cellular dislocation machinery. In most Derlin-2-deficient tissues, we found constitutive upregulation of ER chaperones and IRE-1-mediated induction of the unfolded protein response. The IRE-1/XBP-1 pathway is required for development of highly secretory cells, particularly plasma cells and hepatocytes. However, B lymphocyte development and antibody secretion were normal in the absence of Derlin-2. Likewise, hepatocyte function was unaffected by liver-specific deletion of Derlin-2. Whole-body deletion of Derlin-2 results in perinatal death. The few mice that survived to adulthood all developed skeletal dysplasia, likely caused by defects in collagen matrix protein secretion by costal chondrocytes.


Asunto(s)
Condrocitos/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Respuesta de Proteína Desplegada , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Células Cultivadas , Condrocitos/citología , Embrión de Mamíferos/anomalías , Femenino , Muerte Fetal/genética , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Regulación hacia Arriba
9.
Neural Dev ; 3: 23, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18808695

RESUMEN

BACKGROUND: Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo. RESULTS: We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance. CONCLUSION: This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.


Asunto(s)
Caenorhabditis elegans/fisiología , Polaridad Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Neuronas/citología , Neuronas/enzimología , Proteínas Serina-Treonina Quinasas/genética , Animales , Caenorhabditis elegans/embriología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutagénesis Sitio-Dirigida , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Sinapsis/fisiología
10.
Cell ; 129(3): 549-63, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17482548

RESUMEN

The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification.


Asunto(s)
Axones/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Polaridad Celular , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Femenino , Hipocampo/citología , Humanos , Masculino , Ratones , Neuronas/metabolismo , Transducción de Señal
11.
J Cell Biol ; 175(2): 261-70, 2006 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17043138

RESUMEN

Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Glicoproteínas de Membrana/química , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Animales , Citomegalovirus/metabolismo , Citosol/metabolismo , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/fisiología , Células HeLa , Humanos , Riñón/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteínas/antagonistas & inhibidores , Proteínas/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/química , Ubiquitina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
12.
J Virol ; 80(17): 8739-44, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16912321

RESUMEN

The pathways by which viruses enter cells are diverse, but in all cases, infection necessitates the transfer of the viral genome across a cellular membrane. Polyomavirus (Py) particles, after binding to glycolipid and glycoprotein receptors at the cell surface, are delivered to the lumen of the endoplasmic reticulum (ER). The nature and extent of virus disassembly in the ER, how the viral genome is transported to the cytosol and subsequently to the nucleus, and whether any cellular proteins are involved are not known. Here, we identify an ER-resident protein, Derlin-2, a factor implicated in the removal of misfolded proteins from the ER for cytosolic degradation, as a component of the machinery required for mouse Py to establish an infection. Inhibition of Derlin-2 function by expression of either a dominant-negative form of Derlin-2 or a short hairpin RNA that reduces Derlin-2 levels blocks Py infection by 50 to 75%. The block imposed by Derlin-2 inhibition occurs after the virus reaches the ER and can be bypassed by the introduction of Py DNA into the cytosol. These findings suggest a mode of Py entry that involves cytosolic access via the quality control machinery in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Neoplasias/metabolismo , Poliomavirus/patogenicidad , Animales , Línea Celular Tumoral , Retículo Endoplásmico/virología , Células HeLa , Humanos , Proteínas de la Membrana , Ratones , Ratas
13.
Nature ; 441(7095): 894-7, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16738546

RESUMEN

Human cytomegalovirus (HCMV) prevents the display of class I major histocompatibility complex (MHC) peptide complexes at the surface of infected cells as a means of escaping immune detection. Two HCMV-encoded immunoevasins, US2 and US11, induce the dislocation of class I MHC heavy chains from the endoplasmic reticulum membrane and target them for proteasomal degradation in the cytosol. Although the outcome of the dislocation reactions catalysed is similar, US2 and US11 operate differently: Derlin-1 is a key component of the US11 but not the US2 pathway. So far, proteins essential for US2-dependent dislocation have not been identified. Here we compare interacting partners of wild-type US2 with those of a dislocation-incompetent US2 mutant, and identify signal peptide peptidase (SPP) as a partner for the active form of US2. We show that a decrease in SPP levels by RNA-mediated interference inhibits heavy-chain dislocation by US2 but not by US11. Our data implicate SPP in the US2 pathway and indicate the possibility of a previously unknown function for this intramembrane-cleaving aspartic protease in dislocation from the endoplasmic reticulum.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Citomegalovirus/genética , Citomegalovirus/inmunología , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Immunol Rev ; 207: 126-44, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16181332

RESUMEN

Viruses that establish long-term infections in their hosts have evolved a number of methods to interfere with the activities of the innate and adaptive immune systems. Control of viral infections is achieved in part through the action of cytotoxic T lymphocytes (CTLs) that recognize cytosolically derived antigenic peptides in the context of class I major histocompatibility complex (MHC) molecules. Viral replication within host cells produces abundant proteinaceous fodder for proteasomal digestion and display by class I MHC products. Tactics that disrupt antigen-presentation pathways and prevent the display of peptides to CD8(+) CTLs have been favored during the course of host-virus co-evolution. Viral immunoevasins exploit diverse cellular processes to interfere with host antiviral functions. The study of such viral factors has uncovered novel host proteins that assist these viral factors in their task and that themselves perform important cellular functions. Here, we focus on viral immunoevasins that, together with their cellular targets, interfere with antigen-presentation pathways. In particular, we emphasize the intersection of the cellular quality-control machinery in the endoplasmic reticulum with the herpesvirus proteins that have co-opted it.


Asunto(s)
Presentación de Antígeno/inmunología , Retículo Endoplásmico/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Procesamiento Proteico-Postraduccional/inmunología , Virosis/inmunología , Animales , Retículo Endoplásmico/virología , Humanos
15.
Proc Natl Acad Sci U S A ; 102(40): 14296-301, 2005 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16186509

RESUMEN

Polypeptides that fail to pass quality control in the endoplasmic reticulum (ER) are dislocated from the ER membrane to the cytosol where they are degraded by the proteasome. Derlin-1, a member of a family of proteins that bears homology to yeast Der1p, was identified as a factor that is required for the human cytomegalovirus US11-mediated dislocation of class I MHC heavy chains from the ER membrane to the cytosol. Derlin-1 acts in concert with the AAA ATPase p97 to remove dislocation substrate proteins from the ER membrane, but it is unknown whether other factors aid Derlin-1 in its function. Mammalian genomes encode two additional, related proteins (Derlin-2 and Derlin-3). The similarity of the mammalian Derlin-2 and Derlin-3 proteins to yeast Der1p suggested that these as-yet-uncharacterized Derlins also may play a role in ER protein degradation. We demonstrate here that Derlin-2 is an ER-resident protein that, similar to Derlin-1, participates in the degradation of proteins from the ER. Furthermore, we show that Derlin-2 forms a robust multiprotein complex with the p97 AAA ATPase as well as the mammalian orthologs of the yeast Hrd1p/Hrd3p ubiquitin-ligase complex. The data presented here define a set of interactions between proteins involved in dislocation of misfolded polypeptides from the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Proteínas de Neoplasias/genética , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Transporte de Proteínas/fisiología
16.
Cell Microbiol ; 7(7): 921-34, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15953025

RESUMEN

The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl-beta-cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N-linked glycosylation. Further translocation from the ER did not require the ER-associated degradation (ERAD) pathway, and was Derlin-1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double-stranded breaks was prevented in Brefeldin A-treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.


Asunto(s)
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Haemophilus ducreyi/metabolismo , Animales , Toxinas Bacterianas/toxicidad , Sitios de Unión , Brefeldino A/farmacología , Línea Celular , Colesterol/metabolismo , Citosol/metabolismo , ADN/metabolismo , Desoxirribonucleasas , Células HeLa , Humanos , Magnesio/metabolismo , Ratones , Mutación , Transporte de Proteínas
17.
J Virol ; 79(5): 2768-79, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15708995

RESUMEN

The human cytomegalovirus (HCMV) glycoprotein US11 diverts class I major histocompatibility complex (MHC) heavy chains (HC) from the endoplasmic reticulum (ER) to the cytosol, where HC are subjected to proteasome-mediated degradation. In mouse embryonic fibroblasts that are deficient for X-box binding protein 1 (XBP-1), a key transcription factor in the unfolded protein response (UPR) pathway, we show that degradation of endogenous mouse HC is impaired. Moreover, the rate of US11-mediated degradation of ectopically expressed HLA-A2 is reduced when XBP-1 is absent. In the human astrocytoma cell line U373, turning on expression of US11, but not US2, is sufficient to induce a UPR, as manifested by upregulation of the ER chaperone Bip and by splicing of XBP-1 mRNA. In the presence of dominant-negative versions of XBP-1 and activating transcription factor 6, the kinetics of class I MHC HC degradation were delayed when expression of US11 was turned on. The magnitude of these effects, while reproducible, was modest. Conversely, in cells that stably express high levels of US11, the degradation of HC is not affected by the presence of the dominant negative effectors of the UPR. An infection of human foreskin fibroblasts with human cytomegalovirus induced XBP-1 splicing in a manner that coincides with US11 expression. We conclude that the contribution of the UPR is more pronounced on HC degradation shortly after induction of US11 expression and that US11 is sufficient to induce such a response.


Asunto(s)
Citomegalovirus/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Células Cultivadas , Citomegalovirus/patogenicidad , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/biosíntesis , Antígenos de Histocompatibilidad Clase I/química , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/biosíntesis , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Desnaturalización Proteica , Empalme del ARN , Factores de Transcripción del Factor Regulador X , Factores de Transcripción , Proteínas del Envoltorio Viral , Proteína 1 de Unión a la X-Box
18.
Cell ; 118(1): 69-82, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15242645

RESUMEN

Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , MicroARNs/metabolismo , Vibrio cholerae/fisiología , Vibrio/fisiología , Secuencia de Aminoácidos , Biología Computacional , Secuencia Conservada , Eliminación de Gen , Genes Bacterianos , Genes Reguladores , Proteína de Factor 1 del Huésped/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , MicroARNs/química , MicroARNs/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Vibrio/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia
19.
Nature ; 429(6994): 834-40, 2004 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15215855

RESUMEN

After insertion into the endoplasmic reticulum (ER), proteins that fail to fold there are destroyed. Through a process termed dislocation such misfolded proteins arrive in the cytosol, where ubiquitination, deglycosylation and finally proteasomal proteolysis dispense with the unwanted polypeptides. The machinery involved in the extraction of misfolded proteins from the ER is poorly defined. The human cytomegalovirus-encoded glycoproteins US2 and US11 catalyse the dislocation of class I major histocompatibility complex (MHC) products, resulting in their rapid degradation. Here we show that US11 uses its transmembrane domain to recruit class I MHC products to a human homologue of yeast Der1p, a protein essential for the degradation of a subset of misfolded ER proteins. We show that this protein, Derlin-1, is essential for the degradation of class I MHC molecules catalysed by US11, but not by US2. We conclude that Derlin-1 is an important factor for the extraction of certain aberrantly folded proteins from the mammalian ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Catálisis , Línea Celular Tumoral , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Unión Proteica , Desnaturalización Proteica , Transporte de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas del Envoltorio Viral , Proteínas Virales/metabolismo
20.
Mol Biol Cell ; 14(9): 3690-8, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12972557

RESUMEN

The human cytomegalovirus gene product US11 causes rapid degradation of class I major histocompatibility complex (MHCI) heavy chains by inducing their dislocation from the endoplasmic reticulum (ER) and subsequent degradation by the proteasome. This set of reactions resembles the endogenous cellular quality control pathway that removes misfolded or unassembled proteins from the ER. We show that the transmembrane domain (TMD) of US11 is essential for MHCI heavy chain dislocation, but dispensable for MHCI binding. A Gln residue at position 192 in the US11 TMD is crucial for the ubiquitination and degradation of MHCI heavy chains. Cells that express US11 TMD mutants allow formation of MHCI-beta2m complexes, but their rate of egress from the ER is significantly impaired. Further mutagenesis data are consistent with the presence of an alpha-helical structure in the US11 TMD essential for MHCI heavy chain dislocation. The failure of US11 TMD mutants to catalyze dislocation is a unique instance in which a polar residue in the TMD of a type I membrane protein is required for that protein's function. Targeting of MHCI heavy chains for dislocation by US11 thus requires the formation of interhelical hydrogen bonds within the ER membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membrana Dobles de Lípidos/metabolismo , Complejo Mayor de Histocompatibilidad/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clonación Molecular , Cisteína Endopeptidasas/metabolismo , Humanos , Proteínas de la Membrana , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Mutación , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA