Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(6): 5401-5414, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187355

RESUMEN

The continuing emergence of antibacterial resistance reduces the effectiveness of antibiotics and drives an ongoing search for effective replacements. Screening compound libraries for antibacterial activity in standard growth media has been extensively explored and may be showing diminishing returns. Inhibition of bacterial targets that are selectively important under in vivo (infection) conditions and, therefore, would be missed by conventional in vitro screens might be an alternative. Surrogate host models of infection, however, are often not suitable for high-throughput screens. Here, we adapted a medium-throughput Tetrahymena pyriformis surrogate host model that was successfully used to identify inhibitors of a hyperviscous Klebsiella pneumoniae strain to a high-throughput format and screened circa 1.2 million compounds. The screen was robust and identified confirmed hits from different chemical classes with potent inhibition of K. pneumoniae growth in the presence of T. pyriformis that lacked any appreciable direct antibacterial activity. Several of these appeared to inhibit capsule/mucoidy, which are key virulence factors in hypervirulent K. pneumoniae. A weakly antibacterial inhibitor of LpxC (essential for the synthesis of the lipid A moiety of lipopolysaccharides) also appeared to be more active in the presence of T. pyriformis, which is consistent with the role of LPS in virulence as well as viability in K. pneumoniae.

2.
J Med Chem ; 60(12): 5002-5014, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28549219

RESUMEN

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Amidohidrolasas/química , Animales , Antibacterianos/síntesis química , Técnicas de Química Sintética , Cristalografía por Rayos X , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Femenino , Células Hep G2/efectos de los fármacos , Humanos , Células K562/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...