Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JMIR AI ; 2: e48340, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38875549

RESUMEN

BACKGROUND: Diabetes mellitus is the most challenging and fastest-growing global public health concern. Approximately 10.5% of the global adult population is affected by diabetes, and almost half of them are undiagnosed. The growing at-risk population exacerbates the shortage of health resources, with an estimated 10.6% and 6.2% of adults worldwide having impaired glucose tolerance and impaired fasting glycemia, respectively. All current diabetes screening methods are invasive and opportunistic and must be conducted in a hospital or laboratory by trained professionals. At-risk participants might remain undetected for years and miss the precious time window for early intervention to prevent or delay the onset of diabetes and its complications. OBJECTIVE: We aimed to develop an artificial intelligence solution to recognize elevated blood glucose levels (≥7.8 mmol/L) noninvasively and evaluate diabetic risk based on repeated measurements. METHODS: This study was conducted at KK Women's and Children's Hospital in Singapore, and 500 participants were recruited (mean age 38.73, SD 10.61 years; mean BMI 24.4, SD 5.1 kg/m2). The blood glucose levels for most participants were measured before and after consuming 75 g of sugary drinks using both a conventional glucometer (Accu-Chek Performa) and a wrist-worn wearable. The results obtained from the glucometer were used as ground-truth measurements. We performed extensive feature engineering on photoplethysmography (PPG) sensor data and identified features that were sensitive to glucose changes. These selected features were further analyzed using an explainable artificial intelligence approach to understand their contribution to our predictions. RESULTS: Multiple machine learning models were trained and assessed with 10-fold cross-validation, using participant demographic data and critical features extracted from PPG measurements as predictors. A support vector machine with a radial basis function kernel had the best detection performance, with an average accuracy of 84.7%, a sensitivity of 81.05%, a specificity of 88.3%, a precision of 87.51%, a geometric mean of 84.54%, and F score of 84.03%. CONCLUSIONS: Our findings suggest that PPG measurements can be used to identify participants with elevated blood glucose measurements and assist in the screening of participants for diabetes risk.

2.
Sci Adv ; 8(22): eabn0984, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658033

RESUMEN

The integration of deep learning and theories of reinforcement learning (RL) is a promising avenue to explore novel hypotheses on reward-based learning and decision-making in humans and other animals. Here, we trained deep RL agents and mice in the same sensorimotor task with high-dimensional state and action space and studied representation learning in their respective neural networks. Evaluation of thousands of neural network models with extensive hyperparameter search revealed that learning-dependent enrichment of state-value and policy representations of the task-performance-optimized deep RL agent closely resembled neural activity of the posterior parietal cortex (PPC). These representations were critical for the task performance in both systems. PPC neurons also exhibited representations of the internally defined subgoal, a feature of deep RL algorithms postulated to improve sample efficiency. Such striking resemblance between the artificial and biological networks and their functional convergence in sensorimotor integration offers new opportunities to better understand respective intelligent systems.

3.
Front Aging Neurosci ; 14: 809879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283750

RESUMEN

The ability to maintain relevant information on a daily basis is negatively impacted by aging. However, the neuronal mechanism manifesting memory persistence in young animals and memory decline in early aging is not fully understood. A novel event, when introduced around encoding of an everyday memory task, can facilitate memory persistence in young age but not in early aging. Here, we investigated in male rats how sub-regions of the hippocampus are involved in memory representation in behavioral tagging and how early aging affects such representation by combining behavioral training in appetitive delayed-matching-to-place tasks with the "cellular compartment analysis of temporal activity by fluorescence in situ hybridization" technique. We show that neuronal assemblies activated by memory encoding were also partially activated by novelty, particularly in the distal CA1 and proximal CA3 subregions in young male rats. In early aging, both encoding- and novelty-triggered neuronal populations were significantly reduced with a more profound effect in encoding neurons. Thus, memory persistence through novelty facilitation engages overlapping hippocampal assemblies as a key cellular signature, and cognitive aging is associated with underlying reduction in neuronal activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA