Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215055

RESUMEN

To reduce the morbidity and mortality of candidemia patients through rapid treatment, the development of a simple, rapid molecular diagnostic method that is based on nucleic acid extraction and is superior to conventional methods for detecting Candida in the blood is necessary. We developed a multiplex Candida Pan/internal control (IC) loop-mediated isothermal amplification (LAMP) assay and a simple DNA extraction boiling protocol using Chelex-100 that could extract yeast DNA in blood within 20 min. The Chelex-100/boiling method for DNA extraction showed comparable efficiency to that of the commercial QIAamp UCP Pathogen Mini Kit using Candida albicans qPCR. In addition, the Candida Pan/IC LAMP assay showed superior sensitivity to that of general Candida Pan and species qPCRs against clinical DNA samples extracted with the QIAamp UCP Pathogen Mini Kit and Chelex-100/boiling method. The Candida Pan/IC LAMP assay followed by Chelex-100/boiling-mediated DNA extraction showed high sensitivity (100%) and specificity (100%) against clinical samples infected with Candida. These results suggest that the Candida Pan/IC LAMP assay could be used as a rapid molecular diagnostic test for candidemia.

2.
PLoS One ; 17(2): e0262302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171943

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus are endemic zoonotic diseases that pose significant public health threats in East Asia. As these two diseases share common clinical features, as well as overlapping disease regions, it is difficult to differentiate between SFTS and scrub typhus. A multiplex reverse-transcription loop­mediated isothermal amplification (RT-LAMP) assay was developed to detect large segments and GroES genes for SFTS virus (SFTSV) and Orientia tsutsugamushi (OT). The performance of the RT-LAMP assay was compared and evaluated with those of commercial PowerChek™ SFTSV real-time PCR and LiliF™ TSUTSU nested PCR for 23 SFTS and 12 scrub typhus clinical samples, respectively. The multiplex SFTSV/OT/Internal control (IC) RT-LAMP assay showed comparable sensitivity (91.3%) with that of commercial PowerChek™ SFTSV Real-time PCR (95.6%) and higher sensitivity (91.6%) than that of LiliF™ TSUTSU nested PCR (75%). In addition, the multiplex SFTSV/OT RT-LAMP assay showed 100% specificity and no cross-reactivity for blood from uninfected healthy patients and samples from patients infected with other fever viruses. Thus, the multiplex SFTSV/OT/IC RT-LAMP assay could serve as a useful point-of-care molecular diagnostic test for SFTS and scrub typhus.


Asunto(s)
ADN Bacteriano/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , Tifus por Ácaros/diagnóstico , Síndrome de Trombocitopenia Febril Grave/diagnóstico , ADN Bacteriano/metabolismo , Humanos , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/aislamiento & purificación , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Sistemas de Atención de Punto , ARN Viral/metabolismo , Juego de Reactivos para Diagnóstico , Tifus por Ácaros/microbiología , Sensibilidad y Especificidad , Síndrome de Trombocitopenia Febril Grave/virología
3.
Diagnostics (Basel) ; 11(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34829295

RESUMEN

Malaria, caused by the parasite Plasmodium and transmitted by mosquitoes, is an epidemic that mainly occurs in tropical and subtropical regions. As treatments differ across species of malarial parasites, there is a need to develop rapid diagnostic methods to differentiate malarial species. Herein, we developed a multiplex malaria Pan/Pf/Pv/actin beta loop-mediated isothermal amplification (LAMP) to diagnose Plasmodium spp., P. falciparum, and P. vivax, as well as the internal control (IC), within 40 min. The detection limits of the multiplex malaria Pan/Pf/Pv/IC LAMP were 1 × 102, 1 × 102, 1 × 102, and 1 × 103 copies/µL for four vectors, including the 18S rRNA gene (Plasmodium spp.), lactate dehydrogenase gene (P. falciparum), 16S rRNA gene (P. vivax), and human actin beta gene (IC), respectively. The performance of the LAMP assay was compared and evaluated by evaluating 208 clinical samples (118 positive and 90 negative samples) with the commercial RealStar® Malaria S&T PCR Kit 1.0. The developed multiplex malaria Pan/Pf/Pv/IC LAMP assay showed comparable sensitivity (100%) and specificity (100%) with the commercial RealStar® Malaria S&T PCR Kit 1.0 (100%). These results suggest that the multiplex malaria Pan/Pf/Pv/IC LAMP could be used as a point-of-care molecular diagnostic test for malaria.

4.
Korean J Parasitol ; 59(1): 77-82, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33684990

RESUMEN

As malaria remains a major health problem worldwide, various diagnostic tests have been developed, including microscopy-based and rapid diagnostic tests. LabChip real-time PCR (LRP) is a small and portable device used to diagnose malaria using lab-on-a-chip technology. This study aimed to evaluate the diagnostic performance of LRP for detecting malaria parasites. Two hundred thirteen patients and 150 healthy individuals were enrolled from May 2009 to October 2015. A diagnostic detectability of LRP for malaria parasites was compared to that of conventional RT-PCR. Sensitivity of LRP for Plasmodium vivax, P. falciparum, P. malariae, and P. ovale was 95.5%, 96.0%, 100%, and 100%, respectively. Specificity of LRP for P. vivax, P. falciparum, P. malariae, and P. ovale was 100%, 99.3%, 100%, and 100%, respectively. Cohen's Kappa coefficients between LRP and CFX96 for detecting P. vivax, P. falciparum, P. malariae, and P. ovale were 0.96, 0.98, 1.00, and 1.00, respectively. Significant difference was not observed between the results of LRP and conventional RT-PCR and microscopic examination. A time required to amplify DNAs using LRP and conventional RT-PCR was 27 min and 86 min, respectively. LRP amplified DNAs 2 times more fast than conventional RT-PCR due to the faster heat transfer. Therefore, LRP could be employed as a useful tool for detecting malaria parasites in clinical laboratories.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Dispositivos Laboratorio en un Chip , Malaria/diagnóstico , Malaria/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Protozoario/análisis , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium ovale/genética , Plasmodium ovale/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Sensibilidad y Especificidad , Adulto Joven
5.
PLoS One ; 16(3): e0248042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657176

RESUMEN

A newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), has spread rapidly from its epicenter in China to more than 150 countries across six continents. In this study, we have designed three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer sets to detect the RNA-dependent RNA polymerase (RdRP), Envelope (E) and Nucleocapsid protein (N) genes of SARS CoV-2. For one tube reaction, the detection limits for five combination SARS CoV-2 LAMP primer sets (RdRP/E, RdRP/N, E/N, RdRP/E/N and RdRP/N/Internal control (actin beta)) were evaluated with a clinical nasopharyngeal swab sample. Among the five combination, the RdRP/E and RdRP/N/IC multiplex LAMP assays showed low detection limits. The sensitivity and specificity of the RT-LAMP assay were evaluated and compared to that of the widely used Allplex™ 2019-nCoV Assay (Seegene, Inc., Seoul, South Korea) and PowerChek™ 2019-nCoV Real-time PCR kit (Kogenebiotech, Seoul, South Korea) for 130 clinical samples from 91 SARS CoV-2 patients and 162 NP specimens from individuals with (72) and without (90) viral respiratory infections. The multiplex RdRP (FAM)/N (CY5)/IC (Hex) RT-LAMP assay showed comparable sensitivities (RdRP: 93.85%, N: 94.62% and RdRP/N: 96.92%) to that of the Allplex™ 2019-nCoV Assay (100%) and superior to those of PowerChek™ 2019-nCoV Real-time PCR kit (RdRP: 92.31%, E: 93.85% and RdRP/E: 95.38%).


Asunto(s)
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/genética , Prueba de COVID-19/métodos , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/virología , Cartilla de ADN/genética , Humanos , Proteínas de la Nucleocápside/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcripción Reversa/genética , SARS-CoV-2/patogenicidad , Sensibilidad y Especificidad
6.
PLoS One ; 16(1): e0244753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406154

RESUMEN

INTRODUCTION: The rapid and accurate diagnosis of tuberculosis (TB) is important to reduce morbidity and mortality rates and risk of transmission. Therefore, molecular detection methods such as a real-time PCR-based assay for Mycobacterium tuberculosis (MTB) have been commonly used for diagnosis of TB. Loop-mediated isothermal amplification (LAMP) assay was believed to be a simple, quick, and cost-effective isothermal nucleic acid amplification diagnostic test for infectious diseases. In this study, we designed an in-house multiplex LAMP assay for the differential detection of MTB and non-tuberculosis mycobacterium (NTM), and evaluated the assay using clinical samples. MATERIAL AND METHODS: For the multiplex LAMP assay, two sets of specific primers were designed: the first one was specific for IS6110 genes of MTB, and the second one was universal for rpoB genes of mycobacterium species including NTM. MTB was confirmed with a positive reaction with both primer sets, and NTM was identified with a positive reaction by only the second primer set without a MTB-specific reaction. Total 333 clinical samples were analyzed to evaluate the multiplex LAMP assay. Clinical samples were composed of 195 positive samples (72 MTB and 123NTM) and 138 negative samples. All samples were confirmed positivity or negativity by real-time PCR for MTB and NTM. Analytical sensitivity and specificity were evaluated for the multiplex LAMP assay in comparison with acid fast bacilli staining and the culture method. RESULTS: Of 123 NTM samples, 121 were identified as NTM and 72/72 MTB were identified as MTB by the multiplex LAMP assay. False negative reactions were seen only in two NTM positive samples with co-infection of Candida spp. All 138 negative samples were identified as negative for MTB and NTM. Analytical sensitivity of the multiplex LAMP assay was 100% (72/72) for MTB, and 98.4% (121/123) for NTM. And the specificity of assay was 100% (138/138) for all. CONCLUSIONS: Our newly designed multiplex LAMP assay for MTB and NTM showed relatively good sensitivity in comparison with previously published data to detect isolated MTB. This multiplex LAMP assay is expected to become a useful tool for detecting and differentiating MTB from NTM rapidly at an acceptable sensitivity.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Mycobacterium/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Tuberculosis/diagnóstico , ADN Bacteriano , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Micobacterias no Tuberculosas/aislamiento & purificación , Sensibilidad y Especificidad , Tuberculosis/microbiología
7.
PLoS One ; 15(9): e0238615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915821

RESUMEN

Influenza, which is an acute respiratory disease caused by the influenza virus, represents a worldwide public health and economic problem owing to the significant morbidity and mortality caused by its seasonal epidemics and pandemics. Sensitive and convenient methodologies for the detection of influenza viruses are important for clinical care and infection control as well as epidemiological investigations. Here, we developed a multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) with quencher/fluorescence oligonucleotides connected by a 5' backward loop (LF or LB) primer for the detection of two subtypes of influenza viruses: Influenza A (A/H1 and A/H3) and influenza B. The detection limits of the multiplex RT-LAMP assay were 103 copies and 102 copies of RNA for influenza A and influenza B, respectively. The sensitivities of the multiplex influenza A/B/IC RT-LAMP assay were 94.62% and 97.50% for influenza A and influenza B clinical samples, respectively. The specificities of the multiplex influenza A/B/IC RT-LAMP assay were 100% for influenza A, influenza B, and healthy clinical samples. In addition, the multiplex influenza A/B/IC RT-LAMP assay had no cross-reactivity with other respiratory viruses.


Asunto(s)
Gripe Humana/diagnóstico , Técnicas de Diagnóstico Molecular , Infecciones por Orthomyxoviridae/diagnóstico , Orthomyxoviridae/aislamiento & purificación , Animales , Epidemias , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/genética , Gripe Humana/virología , Gammainfluenzavirus/genética , Gammainfluenzavirus/aislamiento & purificación , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Pandemias
8.
Nanotechnology ; 28(25): 255601, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28548049

RESUMEN

Recently, metal halide perovskite nanocrystals have demonstrated outstanding properties in various optoelectronic applications. Cesium lead halides (CsPbX3) are the most studied perovskites in nanoscale dimensions. However, halide perovskite nanocrystals with other cations have rarely been reported. It is important to develop new perovskite compositions to further expand their application in various fields. In this paper, we first report the synthesis of colloidal rubidium lead iodide (RbPbI3) nanowires (NWs). RbPbI3 NWs have an orthorhombic crystal structure and are single-crystalline in nature. The diameter of the NWs is around 32 nm with lengths up to several tens of micrometers. RbPbI3 NWs absorb strongly below 450 nm. RbPbI3 devices exhibited good photoresponsive behavior, suggesting a potential use in optoelectronics.

9.
Chem Commun (Camb) ; 52(10): 2067-70, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26688424

RESUMEN

Herein, we describe simple, fast and reproducible halide ion exchange reactions in CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) at room temperature. Through the simple adjustment of the halide ion concentration, the photoluminescence of these NCs can be tuned over the entire visible region (425-655 nm). Photodetector devices based on entirely inorganic CsPbI3 NCs are demonstrated for the first time. The photodetectors exhibited a good on/off photocurrent ratio of 10(5).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...