Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 2): 131411, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588841

RESUMEN

Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.


Asunto(s)
Materiales Biocompatibles , Músculo Esquelético , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Músculo Esquelético/fisiología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Sustancias Macromoleculares/química
2.
Curr Res Food Sci ; 8: 100678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298827

RESUMEN

Cultured meat (CM) is an alternative protein food and is produced by cultivating muscle satellite (stem) cells (MSCs) derived from livestock animals (bovine, chickens, and porcine) through myogenesis leading to generate muscle mass. Myostatin (MSTN) is well well-known negative regulator of myogenesis, and in the present study, in silico screening of natural compounds was performed to identify MSTN inhibitors. Interestingly, quercetin was found to inhibit MSTN (binding energy -7.40 kcal/mol), and this was further validated by a 100 ns molecular dynamics simulation. Quercetin was added to culture media to boost myogenesis, and its potent antioxidant property helped maintain media pH. Furthermore, quercetin increased the myotube thickness and length, increased MSC differentiation, and upregulated the gene and protein expressions of myoblast determination protein 1 (MYOD), Myogenin (MYOG), and Myosin heavy chains (MYH) in vitro. In addition, quercetin inhibited the activities of MSTN, activin receptor type-2B (ACVR2B), and SMAD2 and 3, and thus significantly enhanced MSC differentiation and myotube formation. Overall, this study shows that quercetin might be useful for enhancing large-scale CM production. It is hoped that this study provides a starting point for research in the CM area aimed to enhancing product quality, nutritional values, and the efficacy of large-scale production.

3.
Food Sci Biotechnol ; 33(4): 805-815, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371692

RESUMEN

Panax ginseng powder adulterated with other root plants (arrowroot, bellflower, and lance asiabell) was discriminated using Fourier transform infrared (FT-IR) spectroscopy, combined with multivariate analysis. Principal component analysis visually diagnosed the adulteration by showing two distinct clusters based on presence of adulteration. Wavenumber regions (1000 cm-1 and 3300 cm-1) selected from the loading plot associated with the vibration of OH and CH bond in ginsenoside and aromatic compounds. A quantitative model for the content of ginsenosides and specific aromatic compounds as indicators of pure ginseng powder, was developed based on partial least square regression analysis. The performance of the prediction model preprocessed with the Savizky-Golay 1st derivative was improved to R2 of 0.9650, 0.9635, and 0.9591 for Rb1, Rc, and ß-Panasinsene, respectively. Therefore, FT-IR technology makes it possible to rapidly authenticate pure ginseng product based on the ginsenoside contents and aroma compound.

4.
Phytomedicine ; 125: 155350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237512

RESUMEN

BACKGROUND: Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE: The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS: G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS: CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION: These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.


Asunto(s)
Chalconas , Fibras Musculares Esqueléticas , Miostatina , Ratones , Animales , Miostatina/metabolismo , Simulación del Acoplamiento Molecular , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Proliferación Celular , Músculo Esquelético/metabolismo
5.
Life (Basel) ; 13(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38004292

RESUMEN

Androgenic alopecia (AGA) is a dermatological disease with psychosocial consequences for those who experience hair loss. AGA is linked to an increase in androgen levels caused by an excess of dihydrotestosterone in blood capillaries produced from testosterone by 5α-reductase type II (5αR2), which is expressed in scalp hair follicles; 5αR2 activity and dihydrotestosterone levels are elevated in balding scalps. The diverse health benefits of flavonoids have been widely reported in epidemiological studies, and research interest continues to increase. In this study, a virtual screening approach was used to identify compounds that interact with active site residues of 5αR2 by screening a library containing 241 flavonoid compounds. Here, we report two potent flavonoid compounds, eriocitrin and silymarin, that interacted strongly with 5αR2, with binding energies of -12.1 and -11.7 kcal/mol, respectively, which were more significant than those of the control, finasteride (-11.2 kcal/mol). Molecular dynamic simulations (200 ns) were used to optimize the interactions between compounds and 5αR2 and revealed that the interaction of eriocitrin and silymarin with 5αR2 was stable. The study shows that eriocitrin and silymarin provide developmental bases for novel 5αR2 inhibitors for the management of AGA.

6.
Inflamm Regen ; 43(1): 58, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008778

RESUMEN

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.

7.
Biomed Pharmacother ; 168: 115642, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812896

RESUMEN

Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
8.
Foods ; 12(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37761180

RESUMEN

This study used shortwave infrared (SWIR) technology to determine whether red pepper powder was artificially adulterated with Allura Red and red pepper seeds. First, the ratio of red pepper pericarp to seed was adjusted to 100:0 (P100), 75:25 (P75), 50:50 (P50), 25:75 (P25), or 0:100 (P0), and Allura Red was added to the red pepper pericarp/seed mixture at 0.05% (A), 0.1% (B), and 0.15% (C). The results of principal component analysis (PCA) using the L, a, and b values; hue angle; and chroma showed that the pure pericarp powder (P100) was not easily distinguished from some adulterated samples (P50A-C, P75A-C, and P100B,C). Adulterated red pepper powder was detected by applying machine learning techniques, including linear discriminant analysis (LDA), linear support vector machine (LSVM), and k-nearest neighbor (KNN), based on spectra obtained from SWIR (1,000-1,700 nm). Linear discriminant analysis determined adulteration with 100% accuracy when the samples were divided into four categories (acceptable, adulterated by Allura Red, adulterated by seeds, and adulterated by seeds and Allura Red). The application of SWIR technology and machine learning detects adulteration with Allura Red and seeds in red pepper powder.

9.
Foods ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372515

RESUMEN

Shortwave infrared (SWIR) hyperspectral imaging was applied to classify the freshness of mackerels. Total volatile basic nitrogen (TVB-N) and acid values, as chemical compounds related to the freshness of mackerels, were also analyzed to develop a prediction model of freshness by combining them with hyperspectral data. Fresh mackerels were divided into three groups according to storage periods (0, 24, and 48 h), and hyperspectral data were collected from the eyes and whole body, separately. The optimized classification accuracies were 81.68% using raw data from eyes and 90.14% using body data by multiple scatter correction (MSC) pretreatment. The prediction accuracy of TVB-N was 90.76%, and the acid value was 83.76%. These results indicate that hyperspectral imaging, as a nondestructive method, can be used to verify the freshness of mackerels and predict the chemical compounds related to the freshness.

10.
J Anim Sci Technol ; 65(1): 16-31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37093925

RESUMEN

Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-ß), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-ß1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

11.
Food Res Int ; 163: 112221, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596150

RESUMEN

Seaweed, an important food resource in several Asian countries, contains various metabolites, including sugars, organic acids, and amino acids; however, their content is affected by prevailing environmental conditions. This review discusses seaweed metabolomics, especially the distribution of primary and functional secondary metabolites (e.g., carotenoids, polyphenols) in seaweed. Additionally, the effects of global warming on seaweed metabolite profile changes are discussed. For example, high temperatures can increase amino acid levels in seaweeds. Overall, understanding the effects of global warming on seaweed metabolite profiles can be useful for evaluating the nutritional composition of seaweeds as food. This review provides an overview of recent applications of metabolomics in seaweed research as well as a perspective on the nutrient content and cultivation of seaweeds under climate change scenarios.


Asunto(s)
Algas Marinas , Algas Marinas/química , Cambio Climático , Polifenoles , Verduras , Nutrientes
12.
Foods ; 11(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36553829

RESUMEN

The variety of characteristics of red pepper makes it difficult to analyze at the production field through hyperspectral imaging. The importance of pretreatment to adjust the moisture content (MC) in the process of predicting the quality attributes of red pepper powder through hyperspectral imaging was investigated. Hyperspectral images of four types of red pepper powder with different pungency levels and MC were acquired in the visible near-infrared (VIS-NIR) and short-wave infrared (SWIR) regions. Principal component analysis revealed that the powders were grouped according to their pungency level, color value, and MC (VIS-NIR, Principal Component 1 = 95%; SWIR, Principal Component 1 = 91%). The loading plot indicated that 580-610, 675-760, 870-975, 1020-1130, and 1430-1520 nm are the key wavelengths affected by the presence of O-H and C-H bonds present in red pigments, capsaicinoids, and water molecules. The R2 of the partial least squares model for predicting capsaicinoid and free sugar in samples with a data MC difference of 0-2% was 0.9 or higher, and a difference of more than 2% in MC had a negative effect on prediction accuracy. The color value prediction accuracy was barely affected by the difference in MC. It was demonstrated that adjusting the MC is essential for capsaicinoid and free sugar analysis of red pepper.

13.
Cells ; 11(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291131

RESUMEN

Immunoglobulin-like cell adhesion molecule (IgLON4) is a glycosylphosphatidylinositol-anchored membrane protein that has been associated with neuronal growth and connectivity, and its deficiency has been linked to increased fat mass and low muscle mass. Adequate information on IgLON4 is lacking, especially in the context of skeletal muscle. In this study, we report that IgLON4 is profusely expressed in mouse muscles and is intensely localized on the cell membrane. IgLON4 expression was elevated in CTX-injected mouse muscles, which confirmed its role during muscle regeneration, and was abundantly expressed at high concentrations at cell-to-cell adhesion and interaction sites during muscle differentiation. IgLON4 inhibition profoundly affected myotube alignment, and directional analysis confirmed this effect. Additionally, results demonstrating a link between IgLON4 and lipid rafts during myogenic differentiation suggest that IgLON4 promotes differentiation by increasing lipid raft accumulation. These findings support the notion that a well-aligned environment promotes myoblast differentiation. Collectively, IgLON4 plays a novel role in myogenesis and regeneration, facilitates myotube orientation, and is involved in lipid raft accumulation.


Asunto(s)
Glicosilfosfatidilinositoles , Desarrollo de Músculos , Ratones , Animales , Adhesión Celular , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/farmacología , Fibras Musculares Esqueléticas/metabolismo , Moléculas de Adhesión Celular/metabolismo
14.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235135

RESUMEN

'Seolhyang' strawberry is harvested before it is fully ripened and treated with CO2 to extend the shelf-life. However, the volatile changes in the 'Seolhyang' strawberry after short-term CO2 treatment have not been investigated, although the volatile profile is an important quality attribute. Herein, we investigated the effect of short-term high CO2 treatment on the changes in the composition of volatile compounds in 'Seolhyang' strawberries at two ripening stages (i.e., half-red and bright-red) during cold storage using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Furthermore, the effect of CO2 treatment on fruit quality with respect to the aroma was investigated. A total of 30 volatile compounds were identified. Storage increased the volatile compound concentrations, and the total concentration of volatiles in the CO2-treated strawberries was lower than that of the untreated strawberries during storage. The production of some characteristic strawberry volatiles (e.g., 4-methoxy-2,5-dimethyl-3(2H)-furanone) was inhibited in CO2-treated strawberries. However, CO2 treatment helped maintain the concentrations of hexanal and 2-hexenal, which are responsible for the fresh odor in strawberries. Interestingly, CO2 treatment suppressed the production of off-odor volatiles, acetaldehyde, and hexanoic acid during strawberry storage. Thus, short-term CO2 treatment may help maintain the fresh aroma of strawberries during cold storage.


Asunto(s)
Fragaria , Compuestos Orgánicos Volátiles , Acetaldehído/análisis , Dióxido de Carbono/análisis , Fragaria/química , Frutas/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacología
15.
Front Mol Biosci ; 9: 1024764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250007

RESUMEN

Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications. Natural medicines are receiving greater interest due to the inherent safety of natural compounds. Glycyrrhiza uralensis (licorice) is widely consumed and used as medicine. In this study, we investigated the abilities of a crude water extract (CWE) of G. uralensis and two of its constituents (licochalcone A (LicA) and licochalcone B (LicB)) to inhibit the enzymatic activity of DPP-4 in silico and in vitro. In silico studies showed that LicA and LicB bind tightly to the catalytic site of DPP-4 and have 11 amino acid residue interactions in common with the control inhibitor sitagliptin. Protein-protein interactions studies of LicA-DPP4 and LicB-DPP4 complexes with GLP1 and GIP reduced the DPP-4 to GLP1 and GIP interactions, indicated that these constituents might reduce the degradations of GLP1 and GIP. In addition, molecular dynamics simulations revealed that LicA and LicB stably bound to DPP-4 enzyme. Furthermore, DPP-4 enzyme assay showed the CWE of G. uralensis, LicA, and LicB concentration-dependently inhibited DPP-4; LicA and LicB had an estimated IC50 values of 347.93 and 797.84 µM, respectively. LicA and LicB inhibited DPP-4 at high concentrations, suggesting that these compounds could be used as functional food ingredients to manage T2DM.

16.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807547

RESUMEN

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.


Asunto(s)
Medicina Tradicional China , Enfermedades Musculares/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Simulación por Computador , Evaluación Preclínica de Medicamentos , Simulación de Dinámica Molecular , Desarrollo de Músculos/efectos de los fármacos , Enfermedades Musculares/fisiopatología , Unión Proteica
17.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457038

RESUMEN

The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.


Asunto(s)
Enfermedades Musculares , Miostatina , Animales , Fibromodulina/metabolismo , Ratones , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Atrofia Muscular/metabolismo , Enfermedades Musculares/metabolismo , Miostatina/genética , Miostatina/metabolismo , Péptidos/metabolismo
18.
Front Plant Sci ; 13: 1084997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684730

RESUMEN

Ethylene (ET) is a gaseous phytohormone with a crucial role in the ripening of many fruits, including kiwifruit (Actinidia spp.). Meanwhile, treatment with 1-methylcyclopropene (1-MCP), an artificial ET inhibitor delays the ripening of kiwifruit. The objective of this study was to determine the effect of ET and 1-MCP application during time-course storage of kiwifruit. In addition, we aimed to elucidate the molecular details underlying ET-mediated ripening process in kiwifruit. For this purpose, we conducted a time-course transcriptomic analysis to determine target genes of the ET-mediated maturation process in kiwifruit during storage. Thousands of genes were identified to be dynamically changed during storage and clustered into 20 groups based on the similarity of their expression patterns. Gene ontology analysis using the list of differentially expressed genes (DEGs) in 1-MCP-treated kiwifruit revealed that the identified DEGs were significantly enriched in the processes of photosynthesis metabolism and cell wall composition throughout the ripening process. Meanwhile, ET treatment rapidly triggered secondary metabolisms related to the ripening process, phenylpropanoid (e.g. lignin) metabolism, and the biosynthesis of amino acids (e.g. Phe, Cys) in kiwifruit. It was demonstrated that ET biosynthesis and signaling genes were oppositely affected by ET and 1-MCP treatment during ripening. Furthermore, we identified a ET transcription factor, AcEIL (Acc32482) which is oppositely responsive by ET and 1-MCP treatment during early ripening, potentially one of key signaling factor of ET- or 1-MCP-mediated physiological changes. Therefore, this transcriptomic study unveiled the molecular targets of ET and its antagonist, 1-MCP, in kiwifruit during ripening. Our results provide a useful foundation for understanding the molecular details underlying the ripening process in kiwifruit.

19.
Foods ; 10(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34945667

RESUMEN

Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.

20.
Oxid Med Cell Longev ; 2021: 6347792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557265

RESUMEN

Autophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation. Thus, autophagy is an important consideration when considering means of developing treatments for NDs. Various pharmacological studies have reported that the active components in herbal medicines exhibit therapeutic benefits in NDs, for example, by inhibiting cholinesterase activity and modulating amyloid beta levels, and α-synuclein metabolism. A variety of bioactive constituents from medicinal plants are viewed as promising autophagy controllers and are revealed to recover the NDs by targeting the autophagic pathway. In the present review, we discuss the role of autophagy in the therapeutic management of several NDs. The molecular process responsible for autophagy and its importance in various NDs and the beneficial effects of medicinal plants in NDs by targeting autophagy are also discussed.


Asunto(s)
Productos Biológicos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Animales , Autofagia/efectos de los fármacos , Productos Biológicos/uso terapéutico , Manejo de la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...