Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39116896

RESUMEN

Osteoporosis is the most common bone disorder, which is a highly dangerous condition that can promote bone metastases. As the current treatment for osteoporosis involves long-term medication therapy and a cure for bone metastasis is not known, ongoing efforts are required for drug development for osteoporosis. Animal experiments, traditionally used for drug development, raise ethical concerns and are expensive and time-consuming. Organ-on-a-chip technology is being developed as a tool to supplement such animal models. In this study, we developed a bone-on-a-chip by co-culturing osteoblasts, osteocytes, and osteoclasts in an extracellular matrix environment that can represent normal bone, osteopenia, and osteoporotic conditions. We then simulated bone metastases using breast cancer cells in three different bone conditions and observed that bone metastases were most active in osteoporotic conditions. Furthermore, it was revealed that the promotion of bone metastasis in osteoporotic conditions is due to increased vascular permeability. The bone-on-a-chip developed in this study can serve as a platform to complement animal models for drug development for osteoporosis and bone metastasis.


Asunto(s)
Neoplasias Óseas , Dispositivos Laboratorio en un Chip , Osteoporosis , Osteoporosis/patología , Osteoporosis/tratamiento farmacológico , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Animales , Humanos , Osteoblastos/metabolismo , Técnicas de Cocultivo , Ratones , Osteoclastos/patología , Osteoclastos/metabolismo , Osteocitos/patología , Osteocitos/metabolismo , Huesos/patología , Línea Celular Tumoral , Femenino
2.
ACS Biomater Sci Eng ; 10(4): 2477-2485, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38483467

RESUMEN

Examining tumor heterogeneity is essential for selecting an appropriate anticancer treatment for an individual. This study aimed to distinguish low- and high-aggressive tumor cells by analyzing the formation patterns of spheroids. The droplet-based microfluidic system was employed for the formation of each spheroid from four different subtypes of breast tumor cells. Additionally, heterotypic spheroids with T lymphocytes and cancer-associated fibroblasts (CAFs) were produced, and distinctions between low- and high-aggressive tumor cells were explored through the analysis of formation patterns using circularity, convexity, and cell distributions. In both homotypic spheroids and heterotypic spheroids with T lymphocytes, spheroids formed from low-aggressive tumor cells exhibited high circularity and convexity. On the other hand, spheroids formed from high-aggressive tumor cells had relatively low circularity and convexity. In the case of heterotypic spheroids with CAFs, circularity and convexity did not exhibit clear differences between low- and high-aggressive tumor cells, but distinct variations were observed in cell distributions. CAFs and low-aggressive tumor cells were evenly distributed, whereas the CAFs were predominantly located in the inner layer, and high-aggressive tumor cells were primarily located in the outer layer. This finding can offer valuable insights into predicting the aggressiveness of unknown tumor cells.


Asunto(s)
Microfluídica , Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA