Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 12(7): 674-685, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33868588

RESUMEN

The native hepatocellular cancer (HCC) microenvironment is characterized by more hypoxic, hypoglycemic, and acidic conditions than those used in standard cell culture. This study aimed to investigate whether HCC cells cultured in more native conditions have an altered phenotype and drug sensitivity compared to those cultured in standard conditions. Six HCC cell lines were cultured in "standard" (21% O2, 25 mM glucose) or more "native" (1% O2, 5 mM glucose, 10 mM lactate) conditions. Cells were assessed for growth rates, cell cycle distribution, relevant metabolite and protein levels, genome-wide gene expression, mitochondrial DNA sequence and sensitivity to relevant drugs. Many differences in cellular and molecular phenotypes and drug sensitivity were observed between the cells. HCC cells cultured in native conditions had slower doubling times, increased HK2 and GLUT, lower PHDA and ATP levels, and mutations in mitochondrial DNA. Thirty-one genes, including the hypoxia-associated NDRG1, were differentially expressed between the cells. HCC patients in The Cancer Genome Atlas (TCGA) with tumors with a high score based on these 31 genes had a poorer prognosis than those with a low score (p = 0.002). From 90 comparisons of drug sensitivity, increased resistance and sensitivity for cells cultured in native conditions was observed in 14 (16%) and 8 (9%) comparisons respectively. In conclusion, cells cultured in more native conditions can have a more glycolytic and aggressive phenotype and varied drug sensitivity to those cultured in standard conditions, and may provide new insights to understanding tumor biology and drug development.

2.
Br J Cancer ; 120(4): 407-423, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30713340

RESUMEN

BACKGROUND: Emergence of drug-resistant cancer phenotypes is a challenge for anti-cancer therapy. Cancer stem cells are identified as one of the ways by which chemoresistance develops. METHOD: We investigated the anti-inflammatory combinatorial treatment (DA) of doxorubicin and aspirin using a preclinical microfluidic model on cancer cell lines and patient-derived circulating tumour cell clusters. The model had been previously demonstrated to predict patient overall prognosis. RESULTS: We demonstrated that low-dose aspirin with a sub-optimal dose of doxorubicin for 72 h could generate higher killing efficacy and enhanced apoptosis. Seven days of DA treatment significantly reduced the proportion of cancer stem cells and colony-forming ability. DA treatment delayed the inhibition of interleukin-6 secretion, which is mediated by both COX-dependent and independent pathways. The response of patients varied due to clinical heterogeneity, with 62.5% and 64.7% of samples demonstrating higher killing efficacy or reduction in cancer stem cell (CSC) proportions after DA treatment, respectively. These results highlight the importance of using patient-derived models for drug discovery. CONCLUSIONS: This preclinical proof of concept seeks to reduce the onset of CSCs generated post treatment by stressful stimuli. Our study will promote a better understanding of anti-inflammatory treatments for cancer and reduce the risk of relapse in patients.


Asunto(s)
Antiinflamatorios/administración & dosificación , Aspirina/administración & dosificación , Doxorrubicina/administración & dosificación , Recurrencia Local de Neoplasia/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quimioterapia Combinada , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/fisiología , Microfluídica , Prostaglandina-Endoperóxido Sintasas/fisiología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...