Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Pharmacol Res ; 200: 107079, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272334

RESUMEN

The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1ß and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Humanos , Inflamasomas/metabolismo , Ácidos Nucleicos/uso terapéutico , Neoplasias/tratamiento farmacológico , ADN , ARN , Proteínas de Unión al ADN/metabolismo
2.
Microbiol Spectr ; 12(1): e0260923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38038453

RESUMEN

IMPORTANCE: Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited by drug resistance and the non-universal vaccine administration. Hence there is a need for host-targeted therapies against influenza to provide an effective alternative therapeutic target. Sec13 was identified as a novel host interactor of influenza. Endoplasmic reticulum-to-Golgi transport is an important pathway of influenza virus replication and viral export. Specifically, Sec13 has a functional role in influenza replication and virulence.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Replicación Viral , Aparato de Golgi/metabolismo
3.
Cell Mol Life Sci ; 81(1): 3, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055060

RESUMEN

MFSD7b belongs to the Major Facilitator Superfamily of transporters that transport small molecules. Two isoforms of MFSD7b have been identified and they are reported to be heme exporters that play a crucial role in maintaining the cytosolic and mitochondrial heme levels, respectively. Mutations of MFSD7b (also known as FLVCR1) have been linked to retinitis pigmentosa, posterior column ataxia, and hereditary sensory and autonomic neuropathy. Although MFSD7b functions have been linked to heme detoxification by exporting excess heme from erythroid cells, it is ubiquitously expressed with a high level in the kidney, gastrointestinal tract, lungs, liver, and brain. Here, we showed that MFSD7b functions as a facilitative choline transporter. Expression of MFSD7b slightly but significantly increased choline import, while its knockdown reduced choline influx in mammalian cells. The influx of choline transported by MFSD7b is dependent on the expression of choline metabolizing enzymes such as choline kinase (CHKA) and intracellular choline levels, but it is independent of gradient of cations. Additionally, we showed that choline transport function of Mfsd7b is conserved from fly to man. Employing our transport assays, we showed that missense mutations of MFSD7b caused reduced choline transport functions. Our results show that MFSD7b functions as a facilitative choline transporter in mammalian cells.


Asunto(s)
Colina , Proteínas de Transporte de Membrana , Mutación Missense , Animales , Humanos , Colina/metabolismo , Hemo , Mamíferos , Proteínas de Transporte de Membrana/genética
4.
Front Immunol ; 14: 1211730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449203

RESUMEN

Intracellular recognition of self and non-self -nucleic acids can result in the initiation of effective pro-inflammatory and anti-tumorigenic responses. We hypothesized that macrophages can be activated by tumor-derived nucleic acids to induce inflammasome activation in the tumor microenvironment. We show that tumor conditioned media (CM) can induce IL-1ß production, indicative of inflammasome activation in primed macrophages. This could be partially dependent on caspase 1/11, AIM2 and NLRP3. IL-1ß enhances tumor cell proliferation, migration and invasion while coculture of tumor cells with macrophages enhances the proliferation of tumor cells, which is AIM2 and caspase 1/11 dependent. Furthermore, we have identified that DNA-RNA hybrids could be the nucleic acid form which activates AIM2 inflammasome at a higher sensitivity as compared to dsDNA. Taken together, the tumor-secretome stimulates an innate immune pathway in macrophages which promotes paracrine cancer growth and may be a key tumorigenic pathway in cancer. Broader understanding on the mechanisms of nucleic acid recognition and interaction with innate immune signaling pathway will help us to better appreciate its potential application in diagnostic and therapeutic benefit in cancer.


Asunto(s)
Inflamasomas , Neoplasias , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 1/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN/metabolismo , Macrófagos , ADN/metabolismo , Neoplasias/metabolismo , Carcinogénesis/metabolismo
5.
Nat Commun ; 14(1): 1155, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859400

RESUMEN

Spatial transcriptomics technologies generate gene expression profiles with spatial context, requiring spatially informed analysis tools for three key tasks, spatial clustering, multisample integration, and cell-type deconvolution. We present GraphST, a graph self-supervised contrastive learning method that fully exploits spatial transcriptomics data to outperform existing methods. It combines graph neural networks with self-supervised contrastive learning to learn informative and discriminative spot representations by minimizing the embedding distance between spatially adjacent spots and vice versa. We demonstrated GraphST on multiple tissue types and technology platforms. GraphST achieved 10% higher clustering accuracy and better delineated fine-grained tissue structures in brain and embryo tissues. GraphST is also the only method that can jointly analyze multiple tissue slices in vertical or horizontal integration while correcting batch effects. Lastly, GraphST demonstrated superior cell-type deconvolution to capture spatial niches like lymph node germinal centers and exhausted tumor infiltrating T cells in breast tumor tissue.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Encéfalo , Análisis por Conglomerados , Centro Germinal
6.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36829879

RESUMEN

Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.

7.
Dev Psychobiol ; 65(2): e22359, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36811366

RESUMEN

Oxytocin (OT) plays a pivotal role in early parent-child relationship formation and bonding that is critical for the social, cognitive, and emotional development of the child. Therefore, this systematic review aims to consolidate all available evidence regarding the associations of parental OT concentration levels with parenting behavior and bonding within the past 20 years. A systematic search was conducted in five databases from 2002 to May 2022, and 33 studies were finalized and included. Due to the heterogeneity of the data, findings were presented narratively based on the type of OT and parenting outcomes. Current evidence strongly suggests that parental OT levels are positively related to parental touch and parental gaze and affect synchrony and observer-coded parent-infant bonding. No gender difference in OT levels was observed between fathers and mothers, but OT strengthens affectionate parenting in mothers and stimulatory parenting in fathers. Child OT levels were also positively associated with parental OT levels. Family and healthcare providers could encourage more positive touch and interactive play between parent and child to strengthen parent-child relationships.


Asunto(s)
Oxitocina , Responsabilidad Parental , Lactante , Femenino , Humanos , Responsabilidad Parental/psicología , Relaciones Padres-Hijo , Padres , Madres/psicología
8.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834844

RESUMEN

Annexin A1 (ANXA1) is an endogenous protein, which plays a central function in the modulation of inflammation. While the functions of ANXA1 and its exogenous peptidomimetics, N-Acetyl 2-26 ANXA1-derived peptide (ANXA1Ac2-26), in the modulation of immunological responses of neutrophils and monocytes have been investigated in detail, their effects on the modulation of platelet reactivity, haemostasis, thrombosis, and platelet-mediated inflammation remain largely unknown. Here, we demonstrate that the deletion of Anxa1 in mice upregulates the expression of its receptor, formyl peptide receptor 2/3 (Fpr2/3, orthologue of human FPR2/ALX). As a result, the addition of ANXA1Ac2-26 to platelets exerts an activatory role in platelets, as characterised by its ability to increase the levels of fibrinogen binding and the exposure of P-selectin on the surface. Moreover, ANXA1Ac2-26 increased the development of platelet-leukocyte aggregates in whole blood. The experiments carried out using a pharmacological inhibitor (WRW4) for FPR2/ALX, and platelets isolated from Fpr2/3-deficient mice ascertained that the actions of ANXA1Ac2-26 are largely mediated through Fpr2/3 in platelets. Together, this study demonstrates that in addition to its ability to modulate inflammatory responses via leukocytes, ANXA1 modulates platelet function, which may influence thrombosis, haemostasis, and platelet-mediated inflammation under various pathophysiological settings.


Asunto(s)
Anexina A1 , Animales , Humanos , Ratones , Anexina A1/metabolismo , Plaquetas/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Péptidos/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
9.
Pharmacol Biochem Behav ; 220: 173469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36183870

RESUMEN

Nicotine, the primary addictive substance in tobacco, produces the psychomotor, rewarding, and reinforcing effects of tobacco dependence by stimulating nicotinic acetylcholine receptors (nAChRs) in the brain. The present study determined that α4ß2 nAChRs regulate locomotor sensitization by altering dopamine concentration in the nucleus accumbens (NAc) after systemic challenge exposure to whole cigarette smoke condensate (WCSC). Rats were administered subcutaneous injection of WCSC (0.2 mg/kg nicotine/day) for 7 consecutive days and then re-exposed to WCSC after 3 days of withdrawal. Challenge exposure to WCSC significantly increased locomotor activity. This increase was decreased by the subcutaneous injection of the α4ß2 nAChR antagonist, DHßE (3 mg/kg), but not by the intraperitoneal injection of the α7 nAChR antagonist, MLA (5 mg/kg). In parallel with a decrease in locomotor activity, blockade of α4ß2 nAChRs with DHßE decreased dopamine concentration in the NAc which was elevated by challenge exposure to WCSC. These findings suggest that challenge WCSC leads to the expression of locomotor sensitization by elevating dopamine concentration via stimulation of α4ß2 nAChRs expressed in neurons of the NAc in rats.


Asunto(s)
Fumar Cigarrillos , Receptores Nicotínicos , Animales , Dopamina/metabolismo , Nicotina/farmacología , Antagonistas Nicotínicos/farmacología , Núcleo Accumbens/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Nicotiana , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Theranostics ; 12(8): 3794-3817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664067

RESUMEN

Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.


Asunto(s)
Anexina A1 , Microbiota , Neoplasias , Animales , Carcinogénesis/genética , Epigénesis Genética , Ácidos Grasos/farmacología , Metaboloma , Metabolómica , Ratones , Neoplasias/genética , ARN Ribosómico 16S/genética
11.
Front Microbiol ; 13: 869406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531276

RESUMEN

Annually, the influenza virus causes 500,000 deaths worldwide. Influenza-associated mortality and morbidity is especially high among the elderly, children, and patients with chronic diseases. While there are antivirals available against influenza, such as neuraminidase inhibitors and adamantanes, there is growing resistance against these drugs. Thus, there is a need for novel antivirals for resistant influenza strains. Host-directed therapies are a potential strategy for influenza as host processes are conserved and are less prone mutations as compared to virus-directed therapies. A literature search was performed for papers that performed viral-host interaction screens and the Reactome pathway database was used for the bioinformatics analysis. A total of 15 studies were curated and 1717 common interactors were uncovered among all these studies. KEGG analysis, Enrichr analysis, STRING interaction analysis was performed on these interactors. Therefore, we have identified novel host pathways that can be targeted for host-directed therapy against influenza in our review.

13.
Breast Cancer Res ; 24(1): 25, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382852

RESUMEN

BACKGROUND: Despite advancements in therapies, brain metastasis in patients with triple negative subtype of breast cancer remains a therapeutic challenge. Activated microglia are often observed in close proximity to, or within, malignant tumor masses, suggesting a critical role that microglia play in brain tumor progression. Annexin-A1 (ANXA1), a glucocorticoid-regulated protein with immune-regulatory properties, has been implicated in the growth and metastasis of many cancers. Its role in breast cancer-microglia signaling crosstalk is not known. METHODS: The importance of microglia proliferation and activation in breast cancer to brain metastasis was evaluated in MMTV-Wnt1 spontaneous mammary tumor mice and BALBc mice injected with 4T1 murine breast cancer cells into the carotid artery using flow cytometry. 4T1 induced-proliferation and migration of primary microglia and BV2 microglia cells were evaluated using 2D and coculture transwell assays. The requirement of ANXA1 in these functions was examined using a Crispr/Cas9 deletion mutant of ANXA1 in 4T1 breast cancer cells as well as BV2 microglia. Small molecule inhibition of the ANXA1 receptor FPR1 and FPR2 were also examined. The signaling pathways involved in these interactions were assessed using western blotting. The association between lymph node positive recurrence-free patient survival and distant metastasis-free patient survival and ANXA1 and FPR1 and FPR2 expression was examined using TCGA datasets. RESULTS: Microglia activation is observed prior to brain metastasis in MMTV-Wnt1 mice with primary and secondary metastasis in the periphery. Metastatic 4T1 mammary cancer cells secrete ANXA1 to promote microglial migration, which in turn, enhances tumor cell migration. Silencing of ANXA1 in 4T1 cells by Crispr/Cas9 deletion, or using inhibitors of FPR1 or FPR2 inhibits microglia migration and leads to reduced activation of STAT3. Finally, elevated ANXA1, FPR1 and FPR2 is significantly associated with poor outcome in lymph node positive patients, particularly, for distant metastasis free patient survival. CONCLUSIONS: The present study uncovered a network encompassing autocrine/paracrine ANXA1 signaling between metastatic mammary cancer cells and microglia that drives microglial recruitment and activation. Inhibition of ANXA1 and/or its receptor may be therapeutically rewarding in the treatment of breast cancer and secondary metastasis to the brain.


Asunto(s)
Anexina A1 , Neoplasias de la Mama , Microglía , Receptores de Formil Péptido , Animales , Anexina A1/genética , Encéfalo/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Microglía/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina
14.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236967

RESUMEN

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Neoplasias , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Factores de Transcripción , Adenosina Trifosfato/metabolismo , Apoptosis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Consumo de Oxígeno , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Quinasa Tipo Polo 1
15.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35357643

RESUMEN

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Asunto(s)
Epigenómica , Transcriptoma , Ayuno , Perfilación de la Expresión Génica , Encéfalo
16.
Int J Biol Sci ; 17(15): 4254-4270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803496

RESUMEN

Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear. Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1. Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients' specimens compared to adjacent normal tissues. Moreover, Kaplan­Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR. Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.


Asunto(s)
Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Metástasis de la Neoplasia , Neoplasias Experimentales
17.
Artículo en Inglés | MEDLINE | ID: mdl-34574438

RESUMEN

In Singapore, many older adults suffer from subsyndromal depression and/or subsyndromal anxiety, which can negatively impact their physical and mental well-being if left untreated. Due to the general public's reluctance to seek psychological help and the low psychiatrist-to-population ratio in Singapore, this study aims to examine the preliminary efficacy, perceptions, and acceptability of a trained volunteer-led community-based intervention on community-dwelling older adults. Twenty-one participants (control: n = 11; intervention: n = 10) completed the randomized pilot study. A mixed-methods approach (questionnaires, semistructured interviews, examining blood samples, intervention fidelity) was adopted. No significant differences were found between the intervention and the control groups in depression, anxiety, life satisfaction, friendship, and quality of life. However, there was a positive change in quality-of-life scores from baseline to 6 months in the intervention group. The control group had significantly higher cortisol levels and lower annexin-A1 levels at 6 months, while the intervention group did not. Three themes emerged from the interviews: (1) impact of the intervention on older adults' well-being, (2) attitudes toward intervention, and (3) a way forward. However, intervention efficacy could not be established due to small sample size caused by the coronavirus pandemic. Future randomized controlled trials should evaluate volunteer-led, technology-based psychosocial interventions to support these older adults.


Asunto(s)
Vida Independiente , Psiquiatría , Anciano , Trastornos de Ansiedad , Humanos , Proyectos Piloto , Calidad de Vida
18.
Exp Neurol ; 346: 113856, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34474007

RESUMEN

Vascular dementia (VaD) is the second most common form of dementia and is caused by vascular pathologies resulting in chronic cerebral hypoperfusion (CCH)- induced brain injury, and ultimately cognitive impairment and memory loss. Several lines of evidence have demonstrated chronic inflammation may be involved in VaD disease progression. It is now recognized that a major contributor to cerebral and systemic chronic inflammation involves the activation of innate immune molecular complexes termed inflammasomes. Whilst previous studies on animal models of VaD have focused on the cortex, hippocampus and striatum, few studies have investigated the effect of CCH on the cerebellum. Emerging studies have found new roles of the cerebellum in cognition, based on its structural interconnectivity with other brain regions and clinical relevance in neuropsychological deficits. In the present study, we conducted our investigation on the cerebellum using a CCH mouse model of VaD following bilateral common carotid artery stenosis (BCAS). This study is the first to characterize an increased expression of inflammasome receptors, adaptor and effector proteins, markers of inflammasome activation, proinflammatory cytokines, and apoptotic and pyroptotic cell death proteins in the cerebellum following CCH. Furthermore, in AIM2 knockout mice, we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis in the cerebellum following CCH. Collectively, our findings provide novel evidence that AIM2 inflammasome activation promotes apoptosis and pyroptosis in the cerebellum following chronic hypoperfusion in a mouse model of VaD.


Asunto(s)
Apoptosis/fisiología , Lesiones Encefálicas/metabolismo , Cerebelo/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Piroptosis/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/patología , Muerte Celular , Cerebelo/irrigación sanguínea , Cerebelo/patología , Circulación Cerebrovascular/fisiología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/deficiencia , Inflamasomas/antagonistas & inhibidores , Inflamasomas/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
BMJ Case Rep ; 14(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531241

RESUMEN

We report a pair of siblings who developed multisystem inflammatory syndrome in children (MIS-C) in close temporal proximity after recent exposure to SARS-CoV-2. Both siblings presented with Kawasaki disease-like features and haemodynamic instability, with the onset of symptoms within 6 days of each other. Remarkably, one of the siblings was the elder of a pair of monozygotic twins. The younger monozygotic twin, however, did not develop MIS-C.


Asunto(s)
COVID-19 , Anciano , Niño , Humanos , SARS-CoV-2 , Hermanos , Síndrome de Respuesta Inflamatoria Sistémica
20.
Mol Psychiatry ; 26(8): 4544-4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33299135

RESUMEN

Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response-particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1ß and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Sustancia Blanca , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Sustancia Blanca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...