Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959268

RESUMEN

The anticancer properties of fucoidan have been widely studied in cancer research. However, the lack of safety information on the parenteral administration of fucoidan and its rapid clearance from the system have limited its application. Herein, we assessed the therapeutic efficacy and safety of fucoidan and developed fucoidan nanoparticles (FuNPs) to enhance their therapeutic effect in the mouse model of breast cancer. FuNPs were synthesized through the emulsion method, and the stable colloid has an average size of 216.3 nm. FuNPs were efficiently internalized into breast cancer cells in vitro, demonstrating an enhanced antitumor activity in comparison with free form fucoidan. After the treatment of FuNPs, the tumor progression was significantly inhibited in viv. The tumor volume was reduced by 2.49-fold compared with the control group. Moreover, the inhibition of the invasion of tumor cells into the lungs revealed the antimetastatic properties of the FuNPs. FuNPs, as naturally marine polysaccharide-based nanoparticles, have shown their broader therapeutic window and enhanced antimetastatic ability, opening an avenue to the development of the inherently therapeutic nanomedicines.

2.
Psychol Sci ; 28(2): 143-161, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28182526

RESUMEN

Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.


Asunto(s)
Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Refuerzo en Psicología , Animales , Humanos , Masculino , Optogenética , Ratas , Ratas Long-Evans
3.
Exp Anim ; 66(1): 61-74, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27784858

RESUMEN

Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.


Asunto(s)
Lactancia , Percepción , Ratas Sprague-Dawley/fisiología , Aprendizaje Espacial , Destete , Animales , Espinas Dendríticas/fisiología , Femenino , Hipocampo/fisiología , Madres , Embarazo , Células Piramidales/fisiología , Ratas , Corteza Somatosensorial/fisiología
4.
Biol Psychiatry ; 81(12): 1003-1013, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28010876

RESUMEN

BACKGROUND: There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. METHODS: We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. RESULTS: In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. CONCLUSIONS: These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Miedo/fisiología , Ghrelina/fisiología , Consolidación de la Memoria/fisiología , Memoria/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Condicionamiento Clásico/fisiología , Corticosterona/sangre , Ingestión de Alimentos/fisiología , Miedo/efectos de los fármacos , Ghrelina/sangre , Indoles/farmacología , Masculino , Memoria/efectos de los fármacos , Ratas , Receptores de Ghrelina/agonistas , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/metabolismo , Compuestos de Espiro/farmacología , Estrés Psicológico/metabolismo
5.
Circ Res ; 116(7): 1157-69, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623956

RESUMEN

RATIONALE: In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. OBJECTIVE: To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. METHODS AND RESULTS: Coculturing ECs with sSMCs under static condition causes initial increases of 4 anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 hours and those for miR-451/98 lasted for only 6 to 12 hours. Shear stress (12 dynes/cm(2)) to cocultured ECs for 24 hours augments these 4 miR expressions. In vivo, these 4 miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, miR-708, miR-451, and miR-98 target interleukin-1 receptor-associated kinase, inhibitor of nuclear factor-κB kinase subunit-γ, interleukin-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit nuclear factor-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. Nuclear factor-E2-related factor (Nrf)-2 is critical for shear-induction of miR-146a in cocultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. CONCLUSIONS: Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries.


Asunto(s)
Aterosclerosis/prevención & control , Citocinas/biosíntesis , Células Endoteliales/fisiología , Endotelio Vascular/fisiopatología , Hemorreología , Inflamación/genética , MicroARNs/fisiología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/fisiología , Neointima/genética , Interferencia de ARN , Animales , Aorta , Aterosclerosis/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Cricetinae , Citocinas/genética , Femenino , Regulación de la Expresión Génica , Integrinas/fisiología , Masculino , Ratones , Ratones Endogámicos , Factor 2 Relacionado con NF-E2/fisiología , FN-kappa B/metabolismo , Neointima/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Anat Rec (Hoboken) ; 296(10): 1640-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23832822

RESUMEN

An attempt to explore urethral cytoarchitecture including the distribution of smooth muscles and fast and slow striated muscles of adult female Sprague Dawley rat--a popular model in studying lower urinary tract function. Histological and immunohistochemical stainings were carried out to investigate the distribution of urethral muscle fibers and motor end plates. The urethral sphincter was furthermore three-dimensionally reconstructed from serial histological sections. The mucosa at the distal urethra was significantly thicker than that of other segments. A prominent inner longitudinal and outer circular layer of smooth muscles covered the proximal end of urethra. Thick circular smooth muscles of the bladder neck region (urethral portion) decreased significantly distalward and longitudinal smooth muscles became 2- to 3-fold thicker in the rest of the urethra. An additional layer of striated muscles appeared externally after neck region (urethra) and in association with motor end plates ran throughout the remaining urethra as the striated sphincter layer. Most striated muscles were fast fibers while relatively fewer slow fibers often concentrated at the periphery. A pair of extraneous striated muscles, resembling the human urethrovaginal sphincter muscles, connected both sides of mainly the distal vagina to the dorsal striated muscles in the wall of the middle urethra. The tension provided by this pair of muscles, and in conjunction with the striated sphincter of the urethral wall, was likely to function to suspend the middle urethra and facilitates its closure. Comprehensive morphological data of urethral sphincter offers solid basis for researchers conducting studies on dysfunction of bladder outlet.


Asunto(s)
Imagenología Tridimensional , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Uretra/anatomía & histología , Uretra/diagnóstico por imagen , Adulto , Animales , Femenino , Humanos , Fibras Musculares de Contracción Rápida/diagnóstico por imagen , Fibras Musculares de Contracción Lenta/diagnóstico por imagen , Radiografía , Ratas , Ratas Sprague-Dawley
7.
Brain Struct Funct ; 218(6): 1407-17, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23340667

RESUMEN

Brain structures and functions are increasingly recognized to be directly affected by gonadal hormones, which classically determine reproductive functions and sexual phenotypes. In this regard, we found recently that ovariectomy trimmed the dendritic spines of female rat primary somatosensory cortical neurons and estradiol supplement reversed it. Here, we investigated whether in the male androgen also has a cortical modulatory effect. The dendritic arbors and spines of rat somatosensory cortical pyramidal neurons were studied following intracellular dye injection and three-dimensional reconstruction. Dendritic spines, but not length, of the layers III and V pyramidal neurons were found reduced at 2 weeks and rebounded slightly at 4 weeks and further at 8 and 24 weeks following castration, which, however, remained significantly fewer than those of the intact animals. Two weeks of osmotic pump-delivered testosterone treatment to animals castrated for 4 weeks replenished serum testosterone and reversed the densities of dendritic spines on these neurons to control animal levels. Androgen receptor appears to mediate this effect as its antagonist flutamide reduced the dendritic spines of normal adult rats while causing a mild feedback surge of serum testosterone. On the other hand, blocking the conversion of testosterone to estrogen with the aromatase inhibitor anastrozole failed to alter the dendritic spine densities in male adult rats. In conclusion, these results support our hypothesis that testosterone acts directly on the androgen receptor in males to modulate the dendritic spines of somatosensory cortical output neurons.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Tractos Piramidales/citología , Corteza Somatosensorial/citología , Testosterona/metabolismo , Análisis de Varianza , Animales , Flutamida , Bombas de Infusión , Masculino , Orquiectomía , Tractos Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo , Corteza Somatosensorial/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/farmacología
8.
J Biomed Sci ; 19(1): 79, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22931291

RESUMEN

Atherosclerosis is commonly appreciated to represent a chronic inflammatory response of the vascular wall, and its complications cause high mortality in patients. Angioplasty with stent replacement is commonly performed in patients with atherosclerotic disease. However, the restenosis usually has a high incidence rate in angioplasty patients. Although the pathophysiological mechanisms underlying atherosclerosis and restenosis have been well established, new signaling molecules that control the progress of these pathologies have continuously been discovered. MicroRNAs (miRs) have recently emerged as a novel class of gene regulators that work via transcriptional degradation and translational inhibition or activation. Over 30% of genes in the cell can be directly regulated by miRs. Thus, miRs are recognized as crucial regulators in normal development, physiology and pathogenesis. Alterations of miR expression profiles have been revealed in diverse vascular diseases. A variety of functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by miRs. This review summarizes current research progress and knowledge on the roles of miRs in regulating vascular cell function in atherosclerosis and restenosis. These discoveries are expected to present opportunities for clinical diagnostic and therapeutic approaches in vascular diseases resulting from atherosclerosis and restenosis.


Asunto(s)
Aterosclerosis/genética , Reestenosis Coronaria/genética , MicroARNs/metabolismo , Aterosclerosis/patología , Diferenciación Celular , Reestenosis Coronaria/patología , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Neovascularización Patológica
9.
Biomaterials ; 33(28): 6728-38, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22770800

RESUMEN

Arterial smooth muscle cell (SMC) phenotype and proliferation is regulated by their surrounding collagens, which transform from fibrillar to monomeric type in atherogenesis, and platelet-derived growth factor (PDGF)-BB/interleukin (IL)-1ß. This study aims at elucidating the mechanisms by which physical (monomeric vs. fibrillar collagens) and chemical (PDGF-BB/IL-1ßvs. vehicle controls) stimuli modulate SMC cycle and proliferation. SMCs were cultured on monomeric vs. fibrillar type I collagens. In parallel experiments, SMCs on fibrillar collagen were co-stimulated with PDGF-BB/IL-1ß. These physical and chemical factors induced common SMC cycle signaling events, including up-regulations of cyclin-dependent kinase-4/6 and cyclins A/D1, phosphorylation of retinoblastoma (Rb) and its dissociations with E2F2/3. The physical and chemical inductions of SMC cycle signaling and progression were oppositely regulated by phosphatidylinositol 3-kinase (PI3K)-mediated Akt and p38 mitogen-activated protein kinase (MAPK). Fibrillar collagen degraded p66Shc, whose Ser36-phosphorylation plays important roles in the modulation of SMC cycle. Monomeric collagen and PDGF-BB/IL-1ß co-stimulation induced p66Shc expression and Ser36-phosphorylation through ß(1) integrin and PDGF receptor-ß, respectively. In conclusion, our results demonstrate that fibrillar collagen-regulated p66Shc converges the physical and chemical stimuli to modulate SMC cycle and proliferation through PI3K-mediated Akt and p38 MAPK and their opposite regulation in downstream common cell cycle signaling cascades.


Asunto(s)
Colágenos Fibrilares/metabolismo , Interleucina-1/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Aorta/citología , Aorta/efectos de los fármacos , Aterosclerosis/patología , Becaplermina , Ciclo Celular/fisiología , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Reestenosis Coronaria/patología , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Estrés Mecánico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(20): 7770-5, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22550179

RESUMEN

Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress, but the mechanism of force-specific activation of their signaling to modulate cellular function remains unclear. We have demonstrated that bone morphogenetic protein receptor (BMPR)-specific Smad1/5 can be force-specifically activated by oscillatory shear stress (OSS) in ECs to cause cell cycle progression. Smad1/5 is highly activated in ECs of atherosclerotic lesions in diseased human coronary arteries from patients with end-stage heart failure undergoing heart transplantation and from apolipoprotein E-deficient mice. Application of OSS (0.5 ± 4 dyn/cm(2)) causes the sustained activation of Smad1/5 in ECs through activations of mammalian target of rapamycin and p70S6 kinase, leading to up-regulation of cyclin A and down-regulations of p21(CIP1) and p27(KIP1) and, hence, EC cycle progression. En face examination of rat aortas reveals high levels of phospho-Smad1/5 in ECs of the inner, but not the outer, curvature of aortic arch, nor the straight segment of thoracic aorta [corrected]. Immunohistochemical and en face examinations of the experimentally stenosed abdominal aorta in rats show high levels of phospho-Smad1/5 in ECs at poststenotic sites, where OSS occurs. These OSS activations of EC Smad1/5 in vitro and in vivo are not inhibited by the BMP-specific antagonist Noggin and, hence, are independent of BMP ligand. Transfecting ECs with Smad1/5-specific small interfering RNAs inhibits the OSS-induced EC cycle progression. Our findings demonstrate the force-specificity of the activation of Smad1/5 and its contribution to cell cycle progression in ECs induced by disturbed flow.


Asunto(s)
Aterosclerosis/fisiopatología , Ciclo Celular/fisiología , Células Endoteliales/fisiología , Regulación de la Expresión Génica/fisiología , Flujo Sanguíneo Regional/fisiología , Proteína Smad1/metabolismo , Estrés Mecánico , Animales , Aorta Abdominal/citología , Aorta Abdominal/patología , Apolipoproteínas E/genética , Fenómenos Biomecánicos , Vasos Coronarios/citología , Vasos Coronarios/patología , Ciclina A/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Taiwán
11.
Proc Natl Acad Sci U S A ; 109(6): 1967-72, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308472

RESUMEN

Vascular endothelial cells (ECs) are exposed to different flow patterns (i.e., disturbed vs. laminar), and the associated oscillatory shear stress (OSS) or pulsatile shear stress (PSS) lead to differential responses. We investigated the roles of class I and II histone deacetylases (HDAC-1/2/3 and HDAC-5/7, respectively) in regulating NF-E2-related factor-2 (Nrf2) and Krüppel-like factor-2 (KLF2), two transcription factors governing many shear-responsive genes, and the cell cycle in ECs in response to OSS. Application of OSS (0.5 ± 4 dynes/cm(2)) to cultured ECs sustainably up-regulated class I and II HDACs and their nuclear accumulation, whereas PSS (12 ± 4 dynes/cm(2)) induced phosphorylation-dependent nuclear export of class II HDACs. En face immunohistochemical examination of rat aortic arch and experimentally stenosed abdominal aorta revealed high HDAC-2/3/5 levels in ECs in areas exposed to disturbed flow. OSS induced the association of HDAC-1/2/3 with Nrf2 and HDAC-3/5/7 with myocyte enhancer factor-2; deacetylation of these factors led to down-regulation of antioxidant gene NAD(P)H quinone oxidoreductase-1 (NQO1) and KLF2. HDAC-1/2/3- and HDAC-3/5/7-specific small interfering RNAs eliminated the OSS-induced down-regulation of NQO1 and KLF2, respectively. OSS up-regulated cyclin A and down-regulated p21(CIP1) in ECs and induced their proliferation; these effects were mediated by HDAC-1/2/3. Intraperitoneal administration of the class I-specific HDAC inhibitor valproic acid into bromodeoxyuridine (BrdU)-infused rats inhibited the increased EC uptake of BrdU at poststenotic sites. The OSS-induced HDAC signaling and EC responses are mediated by phosphatidylinositol 3-kinase/Akt. Our findings demonstrate the important roles of different groups of HDACs in regulating the oxidative, inflammatory, and proliferative responses of ECs to disturbed flow with OSS.


Asunto(s)
Ciclo Celular , Células Endoteliales/citología , Células Endoteliales/enzimología , Histona Desacetilasas/metabolismo , Reología , Estrés Mecánico , Factores de Transcripción/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Regulación hacia Abajo/genética , Activación Enzimática , Inducción Enzimática , Histona Desacetilasas/biosíntesis , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Modelos Biológicos , Factores Reguladores Miogénicos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Elementos de Respuesta/genética , Regulación hacia Arriba/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...