Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6170-6180, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501927

RESUMEN

As human society has advanced, nuclear energy has provided energy security while also offering low carbon emissions and reduced dependence on fossil fuels, whereas nuclear power plants have produced large amounts of radioactive wastewater, which threatens human health and the sustainability of water resources. Here, we demonstrate a hydrate-based desalination (HBD) technology that uses methane as a hydrate former for freshwater recovery and for the removal of radioactive chemicals from wastewater, specifically from Cs- and Sr-containing wastewater. The complete exclusion of radioactive ions from solid methane hydrates was confirmed by a close examination using phase equilibria, spectroscopic investigations, thermal analyses, and theoretical calculations, enabling simultaneous freshwater recovery and the removal of radioactive chemicals from wastewater by the methane hydrate formation process described in this study. More importantly, the proposed HBD technology is applicable to radioactive wastewater containing Cs+ and Sr2+ across a broad concentration range of low percentages to hundreds of parts per million (ppm) and even subppm levels, with high removal efficiency of radioactive chemicals. This study highlights the potential of environmentally sustainable technologies to address the challenges posed by radioactive wastewater generated by nuclear technology, providing new insights for future research and development efforts.


Asunto(s)
Cesio , Aguas Residuales , Humanos , Estroncio , Agua Dulce , Metano/química
2.
Environ Sci Technol ; 55(6): 3909-3917, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33476139

RESUMEN

N2O has 300 times more global warming potential than CO2 and is also one of the main stratospheric ozone-depleting substances emitted by human activities such as agriculture, industry, and the combustion of fossil fuels and solid waste. We present here an energy-efficient clathrate-based greenhouse gas-separation (CBGS) technology that can operate at room temperature for selectively recovering N2O from gas mixtures. Clathrate formation between α-form/ß-form hydroquinone (α-HQ/ß-HQ) and gas mixtures reveals guest-specific and structure-driven selectivity, revealing the preferential capture of N2O in ß-HQ and the molecular sieving characteristics of α-HQ. With a maximum gas storage capacity and cage occupancy of 54.1 cm3 g-1 and 0.86, respectively, HQ clathrate compounds including N2O are stable at room temperature and atmospheric pressure and thus can be easily synthesized, treated, and recycled via commercial CBGS processes. High selectivity for N2O recovery was observed during ß-HQ clathrate formation from N2O/N2 gas mixtures with N2O concentrations exceeding 20%, whereas α-HQ traps only N2 molecules from gas mixtures. Full characterization using X-ray diffraction, scanning electron microscopy, Raman spectroscopy, solid-state nuclear magnetic resonance, and compositional analysis and the formation kinetics of HQ clathrates was conducted to verify the peculiar selectivity behavior and to design the conceptual CBGS process. These results provide a new playground on which to tailor host-guest materials and develop commercial processes for the recovery and/or sequestration of greenhouse gases.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Gases , Calentamiento Global , Gases de Efecto Invernadero/análisis , Humanos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA