Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Res ; 56(1): 40, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37438821

RESUMEN

BACKGROUND: Polar microalgae contain unique compounds that enable them to adapt to extreme environments. As the skin barrier is our first line of defense against external threats, polar microalgae extracts may possess restorative properties for damaged skin, but the potential of microalgae extracts as skin protective agents remains unknown. PURPOSE: This study aimed to analyze compound profiles from polar microalgae extracts, evaluate their potential as skin epithelial protective agents, and examine the underlying mechanisms. METHODS: Six different polar microalgae, Micractinium sp. (KSF0015 and KSF0041), Chlamydomonas sp. (KNM0029C, KSF0037, and KSF0134), and Chlorococcum sp. (KSF0003), were collected from the Antarctic or Arctic regions. Compound profiles of polar and non-polar microalgae extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The protective activities of polar microalgae extracts on human keratinocyte cell lines against oxidative stress, radiation, and psoriatic cytokine exposure were assessed. The potential anti-inflammatory mechanisms mediated by KSF0041, a polar microalga with protective properties against oxidative stress, ultraviolet (UV) B, and an inflammatory cytokine cocktail, were investigated using RNA-sequencing analysis. To evaluate the therapeutic activity of KSF0041, an imiquimod-induced murine model of psoriatic dermatitis was used. RESULTS: Polar microalgae contain components comparable to those of their non-polar counterparts, but also showed distinct differences, particularly in fatty acid composition. Polar microalgae extracts had a greater ability to scavenge free radicals than did non-polar microalgae and enhanced the viability of HaCaT cells, a human keratinocyte cell line, following exposure to UVB radiation or psoriatic cytokines. These extracts also reduced barrier integrity damage and decreased mRNA levels of inflammatory cytokines in psoriatic HaCaT cells. Treatment with KSF0041 extract altered the transcriptome of psoriatic HaCaT cells toward a more normal state. Furthermore, KSF0041 extract had a therapeutic effect in a mouse model of psoriasis. CONCLUSIONS: Bioactive compounds from polar microalgae extracts could provide novel therapeutics for damaged and/or inflamed skin.


Asunto(s)
Dermatitis , Microalgas , Humanos , Animales , Ratones , Queratinocitos , Citocinas , Sustancias Protectoras , Inflamación , Extractos Vegetales/farmacología
2.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135751

RESUMEN

The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.


Asunto(s)
Antioxidantes , Phaeophyceae , Regiones Antárticas , Antioxidantes/farmacología , Dextranos , Ácidos Grasos , Humanos , Lipopolisacáridos , Recursos Naturales , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...