Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 333: 138941, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37187373

RESUMEN

The mainstream deammonification of municipal wastewater has been recognized as one of the greatest challenges in wastewater engineering. The conventional activated sludge process has disadvantages of high energy input and sludge production. To tackle this situation, an innovative A-B process, where an anaerobic biofilm reactor (AnBR) functioned as the A stage for energy recovery, and a step-feed membrane bioreactor (MBR) functioned as the B stage for mainstream deammonification, was constructed for carbon-neutral wastewater treatment. For addressing the challenge associated with selective retention of ammonia-oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB), a multi-parameter control-based operation strategy was developed with synergistic control of influent COD redistribution, dissolved oxygen (DO) concentration and sludge retention time (SRT) in the innovative AnBR - step-feed MBR system. Results showed that more than 85% of wastewater COD could be removed with the direct production of methane gas in the AnBR. A relatively stable partial nitritation, which is a prerequisite of anammox, was achieved with the successful suppression of NOB, leading to 98% of ammonium-N and 73% of total nitrogen removed. Anammox bacteria could well survive and enrich in the integrated system, and the contribution of anammox to the total nitrogen removal was more than 70% at optimal conditions. Reactions network involved in the nitrogen transformation in the integrated system was further constructed through the mass balance and microbial community structure analyses. Consequently, this study demonstrated a practically feasible process configuration with high operation and control flexibility towards stable mainstream deammonification of municipal wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Compuestos de Amonio/análisis , Bacterias , Reactores Biológicos/microbiología , Biopelículas , Nitrógeno/análisis , Nitritos/química , Oxidación-Reducción
2.
Sci Total Environ ; 795: 148831, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246135

RESUMEN

Anaerobic digestion is a common stabilization method for treating primary sludge (PS) and waste activated sludge (WAS). However, its application is often limited by the degradation of WAS. Recent studies have demonstrated FNA to be an effective pre-treatment for enhancing WAS degradability, while having limited effect on PS degradability. WAS characteristics are impacted by wastewater treatment plant (WWTP) configuration and this study is the first to compare the effectiveness of FNA pre-treatment on WAS from WWTP with and without primary treatment. In this study, WAS samples were collected from four full-scale WWTPs with or without primary treatment. Sludge characterization, biomethane potential tests and mathematical modeling were conducted to assess the impacts of FNA pre-treatment on anaerobic digestion. The results showed that FNA pre-treatment was consistently effective for WAS from different WWTPs, while the extent of enhancement varied between WWTPs. For WAS from WWTPs without primary treatment, FNA pretreatment increased the rate of hydrolysis by 54-66% compared to 22-33% increase for WAS without primary treatment. In contrast, WAS from WWTPs with primary treatment experienced greater increases in methane potential (22-24%) compared to WAS from WWTPs without primary treatment (14-16%). These variances could be associated with primary treatment impacting the wastewater COD/N ratio and thus portion of extracellular polymetric substances (EPS) and cells in WAS. FNA pre-treatment targets the destruction of polymetric substances and cells, therefore WAS with a higher proportion of cells (i.e., WAS with primary treatment) experienced greater improvements in methane yield. Similarly, greater improvements in hydrolysis rate were observed for WAS from WWTP without primary sedimentation which contain higher proportions of large EPS molecules. Despite its consistent effectiveness on WAS samples, FNA pre-treatment was ineffective for improving the digestibility of high-rate activated sludge (HRAS).


Asunto(s)
Ácido Nitroso , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Water Res ; 194: 116912, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33639389

RESUMEN

Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) processes have been proven effective for nitrogen removal from synthetic wastewater. However, the demonstration using real wastewater has not been achieved yet. To this end, this study investigated the versatile applications of n-DAMO process in real wastewater treatment for the first time. Two methane-based membrane biofilm reactors (MBfRs) were employed to combine anammox and n-DAMO microorganisms, targeting nitrogen removal in mainstream (i.e., domestic sewage) and sidestream (i.e., anaerobic digestion liquor), respectively. Considering various technologies in sewage treatment, three different technical routes, including nitritation + methane-based MBfR, partial nitritation + methane-based MBfR and partial nitritation + anammox + methane-based MBfR, were investigated comprehensively, all producing effluent quality with total nitrogen (TN) at 5 mg N/L or less. Regarding the sidestream treatment, the methane-based MBfR also removed up to 96% TN from the partially nitrified anaerobic digestion liquor at a practically useful rate of 0.5 kg N/m3/d. Microbial communities revealed by 16S rRNA gene amplicon sequencing indicated the dominance of n-DAMO archaea in both reactors, along with the existence of anammox bacteria and n-DAMO bacteria. As the first demonstration of n-DAMO process in real wastewater, this study comprehensively confirmed the applicability of using methane as carbon source to remove nitrogen from both mainstream and sidestream wastewater, supporting their adoption by industries in practice.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Desnitrificación , Metano , Nitratos , Nitritos , Oxidación-Reducción , ARN Ribosómico 16S/genética
4.
Sci Total Environ ; 745: 141153, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32736115

RESUMEN

Anaerobic digestion is an attractive process in wastewater treatment plants (WWTPs) to achieve simultaneous sludge reduction and energy recovery. While converting the majority of organic carbon to biogas (mainly consisting 60%CH4 + 40%CO2), the high-strength anaerobic digestion liquor consists of a high level of nitrogen concentration. The feasibility of utilizing biogas produced in-situ to achieve satisfactory nitrogen removal performance from partially nitrified anaerobic digestion liquor was examined in this study. To this end, a membrane biofilm reactor (MBfR) was used to couple nitrite- or nitrate-dependent anaerobic methane oxidation (n-DAMO) and anammox microorganisms, which was supplied with synthetic biogas and partially nitrified anaerobic digestion liquor (470 mg NH4+-N/L + 560 mg NO2--N/L). The MBfR achieved not only nearly complete nitrogen removal (~99%), but also a practically useful nitrogen removal rate above 1 kg N/m3/d. Due to the acidification caused by excessive CO2 supply from biogas, pH dropping was observed. Two corresponding strategies, i.e., intermittent alkali dosing and intermittent nitrogen gas flushing, were developed to control the pH at neutral. Mass balance based on batch tests and microbial community analysis by 16S rRNA gene amplicon sequencing both showed the joint contribution of anammox bacteria and anaerobic methane oxidizers to the nitrogen removal. This study proved the potential and capacity of MBfR to access complete nitrogen removal from high-strength wastewater by using biogas produced in-situ, thus leading to a significant reduction of external carbon addition in practice.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Anaerobiosis , Biocombustibles , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S , Ríos , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...