Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4049, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193873

RESUMEN

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.


Asunto(s)
Pared Celular/metabolismo , Citrus/microbiología , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Factores de Virulencia/genética , Xanthomonas/metabolismo , Xilanos/metabolismo , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Activación Transcripcional , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidad
2.
Nat Commun, v. 12, 4049, jun. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3884

RESUMEN

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.

4.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451508

RESUMEN

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glicósido Hidrolasas/química , beta-Glucanos/química , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucanos/química , Glicósidos/química , Modelos Moleculares , Especificidad por Sustrato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...