Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 707067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899364

RESUMEN

The control of the biological rhythms begins with the activation of photo- and thermosensitive cells located in various organs of the fish such as brain, eye, and skin, but a central clock is still to be identified in teleosts. Thermal changes are stressors which increase cortisol and affect the rhythm of other hormones such as melatonin and growth hormone (GH), in both endo- and ectothermic organisms. Our aim was to investigate how temperature (23°C for 6 days) lower than the optimal (28°C) modulates expression of several gene pathways including growth hormone (gh1) and its receptors (ghra, ghrb), insulin-like growth factor1 (igf1a, igf1b) and its receptors (igf1ra, igf1rb), cortisol and its receptor (gr), the limiting enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, aanat) and melatonin receptors (mtnr1aa, mtnr1bb), as well as their relationship with clock genes in Danio rerio in early light and early dark phases of the day. Lower temperature reduced the expression of the hormone gene gh1, and of the related receptors ghra, ghrb, igf1ra, and igf1rb. Cortisol levels were higher at the lower temperature, with a decrease of its receptor (gr) transcripts in the liver. Interestingly, we found higher levels of aanat transcripts in the brain at 23°C. Overall, lower temperature downregulated the transcription of hormone related genes and clock genes. The results suggest a strong correlation of temperature challenge with the clock molecular mechanism and the endocrine systems analyzed, especially the growth hormone and melatonin axes, in D. rerio tissues.

2.
Ecotoxicol Environ Saf ; 166: 375-382, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30278400

RESUMEN

Estuarine osmoconformes rely on their ability to perform tissue and cell water regulation to cope with daily osmotic challenges that occur in the estuary. In addition, these animals currently must deal with pollutants present in the estuarine environment, which can disturb their capacity of water regulation. We collected the mangrove oyster Crassostrea rhizophorae in two tropical estuaries in the Northeast region of Brazil with different degrees of human interference: the Paraíba Estuary (impacted) and the Mamanguape Estuary (preserved). Tissue water content was analyzed after exposure to salinities 12, 24 and 36 for 24 h. Gill cell volume regulation was analyzed in vitro upon hypo- and hyper-osmotic conditions. We also analyzed gill MXR (multi-xenobiotic resistance) mechanism, as reference of environmental pollution. Gill and muscle of oysters from two sites of Paraíba Estuary, and from one site of Mamanguape Estuary were not able to maintain tissue water content upon hypo- and hyper-osmotic conditions. Gill cells of oyster from the same sites exhibited swelling followed by regulatory volume decrease upon hypo-osmotic condition. Gill MXR activity was increased in oysters from these sites. The best tissue and cell water regulation, and the lowest MXR activity, was found in oyster from downstream of Mamanguape Estuary, our reference site and the one most preserved. Tissue and cell water regulation proved to be a sensitive parameter to environmental pollution and could be considered as biomarker of aquatic contamination.


Asunto(s)
Crassostrea/metabolismo , Monitoreo del Ambiente/métodos , Estuarios , Agua/metabolismo , Animales , Biomarcadores/metabolismo , Brasil , Branquias/metabolismo , Músculos/metabolismo , Ósmosis/efectos de los fármacos , Salinidad , Estrés Salino/fisiología , Contaminantes Químicos del Agua/farmacología , Xenobióticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...