Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0511522, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698428

RESUMEN

Members of the Meyerozyma guilliermondii species complex are able to cause superficial and life-threatening systemic infections with low susceptibility to azoles and echinocandins. We tested 130 bloodstream M. guilliermondii complex isolates collected from eight Latin American medical centers over 18 years (period 1 = 2000-2008 and period 2 = 2009-2018) to investigate trends in species distribution and antifungal resistance. The isolates were identified by rDNA ITS region sequencing, and antifungal susceptibility tests were performed against fluconazole, voriconazole, anidulafungin, and amphotericin B using the CLSI microbroth method. M. guilliermondii sensu stricto (s.s.; n = 116) was the most prevalent species, followed by Meyerozyma caribbica (n = 12) and Meyerozyma carpophila (n = 2). Based on rDNA ITS identification, three clades within M. guilliermondii sensu stricto were characterized (clade 1 n = 94; clade 2 n = 19; and clade 3 n = 3). In the second period of study, we found a substantial increment in the isolation of M. caribbica (3.4% versus 13.8%; P = 0.06) and clade 2 M. guilliermondii s.s. exhibiting lower susceptibility to one or more triazoles. IMPORTANCE Yeast-invasive infections play a relevant role in human health, and there is a concern with the emergence of non-Candida pathogens causing disease worldwide. There is a lack of studies addressing the prevalence and antifungal susceptibility of different species within the M. guilliermondii complex that cause invasive infections. We evaluated 130 episodes of M. guilliermondii species complex candidemia documented in eight medical centers over 18 years. We detected the emergence of less common species within the Meyerozyma complex causing candidemia and described a new clade of M. guilliermondii with limited susceptibility to triazoles. These results support the relevance of continued global surveillance efforts to early detect, characterize, and report emergent fungal pathogens exhibiting limited susceptibility to antifungals.

2.
PLoS One ; 15(4): e0230981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32251488

RESUMEN

Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/fisiología , Aminoácidos/metabolismo , Autofagia/genética , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Bortezomib/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Genes Fúngicos , Prueba de Complementación Genética , Humanos , Técnicas In Vitro , Mutación , Nitrógeno/metabolismo , Estrés Oxidativo/genética , Inhibidores de Proteasoma/farmacología , Procesamiento Proteico-Postraduccional , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...