Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18606, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903875

RESUMEN

The COVID-19 pandemic has caused a severe global health and economic crisis, with significant consequences for human mortality and morbidity. Therefore, there is an urgent need for more studies on the immune response to SARS-CoV-2 infection, both to enhance its effectiveness and prevent its deleterious effects. This study presents the chronology of antibodies during six months after infection in hospitalized patients and the kinetics of serum soluble mediators of the cellular response triggered by SARS-CoV-2. Samples and clinical data from 330 patients hospitalized at the Hospital da Baleia in Belo Horizonte, Brazil, who were suspected of having COVID-19, were collected at the time of hospitalization and during 6 months after infection. The immune response was analyzed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. There was a significant difference in IgM specific antibody titers from the 7th to 60th days after infection between COVID-19 negative and positive patients. Soon after 60 days after infection, antibody levels started to reduce, becoming similar to the antibody levels of the COVID-19 negative patients. IgG specific antibodies started to be detectable after 9 days of infection and antibody levels were comparatively higher in positive patients as soon as after 7 days. Furthermore, IgG levels remained higher in these patients during the complete period of 180 days after infection. The study observed similar antibody profiles between different patient groups. The soluble systemic biomarkers evaluated showed a decrease during the six months after hospitalization, except for CCL11, CXCL8, CCL3, CCL4, CCL5, IL-6, IFN-g, IL-17, IL-5, FGF-basic, PDGF, VEGF, G-CSF, and GM-CSF. The results indicate that IgM antibodies are more prominent in the early stages of infection, while IgG antibodies persist for a longer period. Additionally, the study identified that patients with COVID-19 have elevated levels of biomarkers after symptom onset, which decrease over time.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Formación de Anticuerpos , Pandemias , Anticuerpos Antivirales , Biomarcadores , Inmunoglobulina G , Inmunoglobulina M
2.
iScience ; 26(1): 105696, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36465857

RESUMEN

The severe acute respiratory syndrome spread worldwide, causing a pandemic. SARS-CoV-2 mutations have arisen in the spike, a glycoprotein at the viral envelope and an antigenic candidate for vaccines against COVID-19. Here, we present comparative data of the glycosylated full-length ancestral and D614G spike together with three other transmissible strains classified by the World Health Organization as variants of concern: beta, gamma, and delta. By showing that D614G has less hydrophobic surface exposure and trimer persistence, we place D614G with features that support a model of temporary fitness advantage for virus spillover. Furthermore, during the SARS-CoV-2 adaptation, the spike accumulates alterations leading to less structural stability for some variants. The decreased trimer stability of the ancestral and gamma and the presence of D614G uncoupled conformations mean higher ACE-2 affinities compared to the beta and delta strains. Mapping the energetics and flexibility of variants is necessary to improve vaccine development.

3.
Vaccines (Basel) ; 10(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36016193

RESUMEN

Despite the intramuscular route being the most used vaccination strategy against SARS-CoV-2, the intradermal route has been studied around the globe as a strong candidate for immunization against SARS-CoV-2. Adjuvants have shown to be essential vaccine components that are capable of driving robust immune responses and increasing the vaccination efficacy. In this work, our group aimed to develop a vaccination strategy for SARS-CoV-2 using a trimeric spike protein, by testing the best route with formulations containing the adjuvants AddaS03, CpG, MPL, Alum, or a combination of two of them. Our results showed that formulations that were made with AddaS03 or CpG alone or AddaS03 combined with CpG were able to induce high levels of IgG, IgG1, and IgG2a; high titers of neutralizing antibodies against SARS-CoV-2 original strain; and also induced high hypersensitivity during the challenge with Spike protein and a high level of IFN-γ producing CD4+ T-cells in mice. Altogether, those data indicate that AddaS03, CpG, or both combined may be used as adjuvants in vaccines for COVID-19.

4.
Biochem Eng J ; 186: 108537, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35874089

RESUMEN

Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA). A receiver operator characteristic (ROC) analysis allowed optimizing the cut-off and confirmed the high accuracy of the test: 98.6% specificity and 95% sensitivity for 11+ days after symptoms onset. We further showed that dried blood spots collected by finger pricking on simple test strips could replace conventional plasma/serum samples. A cost estimate was performed and revealed a final retail price in the range of one US dollar, reflecting the low cost of the ELISA test platform and the elimination of the need for venous blood sampling and refrigerated sample handling in clinical laboratories. The presented workflow can be completed in 4 months from first antigen expression to final test validation. It can be applied to other pathogens and in future pandemics, facilitating reliable and affordable seroepidemiological surveillance also in remote areas and in low-income countries.

5.
Front Immunol ; 13: 884760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844561

RESUMEN

The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.


Asunto(s)
COVID-19 , Vacunas Virales , Adyuvantes Inmunológicos , Compuestos de Alumbre , Animales , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Ratones , Poli I-C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
Front Immunol ; 13: 918896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757764

RESUMEN

Background: Effective and safe vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical to controlling the COVID-19 pandemic and will remain the most important tool in limiting the spread of the virus long after the pandemic is over. Methods: We bring pioneering contributions on the maintenance of the immune response over a year on a real-life basis study in 1,587 individuals (18-90 yrs, median 39 yrs; 1,208 female/379 male) who underwent vaccination with two doses of CoronaVac and BNT162b2 booster after 6-months of primary protocol. Findings: Elevated levels of anti-spike IgG antibodies were detected after CoronaVac vaccination, which significantly decreased after 80 days and remained stable until the introduction of the booster dose. Heterologous booster restored antibody titers up to-1·7-fold, changing overall seropositivity to 96%. Titers of neutralising antibodies to the Omicron variant were lower in all timepoints than those against Delta variant. Individuals presenting neutralising antibodies against Omicron also presented the highest titers against Delta and anti-Spike IgG. Cellular immune response measurement pointed out a mixed immune profile with a robust release of chemokines, cytokines, and growth factors on the first month after CoronaVac vaccination followed by a gradual reduction over time and no increase after the booster dose. A stronger interaction between those mediators was noted over time. Prior exposure to the virus leaded to a more robust cellular immune response and a rise in antibody levels 60 days post CoronaVac than in individuals with no previous COVID-19. Both vaccines were safe and well tolerated among individuals. Interpretation: Our data approach the effectiveness of CoronaVac association with BNT162b2 from the clinical and biological perspectives, aspects that have important implications for informing decisions about vaccine boosters. Funding: Fiocruz, Brazil.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162/inmunología , Brasil , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina G , Masculino , Pandemias , SARS-CoV-2
7.
iScience ; 24(11): 103315, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34723156

RESUMEN

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

8.
J Exp Med ; 218(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34292314

RESUMEN

Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.


Asunto(s)
Reacciones Cruzadas/inmunología , Proteínas no Estructurales Virales/inmunología , Infección por el Virus Zika/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Linfocitos B/virología , Femenino , Centro Germinal/patología , Centro Germinal/virología , Inmunización , Inmunoglobulina M/sangre , Ratones Endogámicos BALB C , Proteínas no Estructurales Virales/sangre , Infección por el Virus Zika/virología
9.
Biotechnol Bioeng ; 118(9): 3581-3592, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34143442

RESUMEN

Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.


Asunto(s)
Vacunas de Partículas Similares a Virus , Vacuna contra la Fiebre Amarilla , Virus de la Fiebre Amarilla/química , Células HEK293 , Humanos , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Vacuna contra la Fiebre Amarilla/química , Vacuna contra la Fiebre Amarilla/aislamiento & purificación
10.
Vaccine ; 37(47): 7061-7069, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201056

RESUMEN

Flaviviruses are enveloped viruses with positive-sense, single-stranded RNA, which are most commonly transmitted by infected mosquitoes. Zika virus (ZIKV) and yellow fever virus (YFV) are flaviviruses that have caused significant outbreaks in the last few years. Since there is no approved vaccine against ZIKV, and since the existing YF attenuated vaccine presents disadvantages related to limited supply and to rare, but fatal adverse effects, there is an urgent need for new vaccines to control these diseases. Virus-like particles (VLPs) represent a recombinant platform to produce safe and immunogenic vaccines. Thus, based on our experience of expressing in recombinant mammalian cells VLPs of most flaviviruses circulating in the Americas, this work focused on the evaluation of chromatographic purification processes for zika and yellow-fever VLPs. The clarified cell culture supernatant was processed by a membrane-based anion-exchange chromatography and then a multimodal chromatographic step. With this process, it was possible to obtain the purified VLPs with a yield (including the clarification step) of 66.4% for zika and 68.1% for yellow fever. DNA clearance was in the range of 99.8-99.9%, providing VLP preparations that meet the WHO limit for this critical contaminant. Correct size and morphology of the purified VLPs were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The promising results obtained for both zika and yellow fever VLPs indicate that this process could be potentially applied also to VLPs of other flaviviruses.


Asunto(s)
Flavivirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Células HEK293 , Humanos , Inmunogenicidad Vacunal/inmunología , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...