Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1576, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332149

RESUMEN

Chirality and topology are intimately related fundamental concepts, which are heavily explored to establish spin-textures as potential magnetic bits in information technology. However, this ambition is inhibited since the electrical reading of chiral attributes is highly non-trivial with conventional current perpendicular-to-plane (CPP) sensing devices. Here we demonstrate from extensive first-principles simulations and multiple scattering expansion the emergence of the chiral spin-mixing magnetoresistance (C-XMR) enabling highly efficient all-electrical readout of the chirality and helicity of respectively one- and two-dimensional magnetic states of matter. It is linear with spin-orbit coupling in contrast to the quadratic dependence associated with the unveiled non-local spin-mixing anisotropic MR (X-AMR). Such transport effects are systematized on various non-collinear magnetic states - spin-spirals and skyrmions - and compared to the uncovered spin-orbit-independent multi-site magnetoresistances. Owing to their simple implementation in readily available reading devices, the proposed magnetoresistances offer exciting and decisive ingredients to explore with all-electrical means the rich physics of topological and chiral magnetic objects.

2.
Sci Rep ; 10(1): 14655, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887911

RESUMEN

Magnetic skyrmions are prime candidates as information carriers for spintronic devices due to their topological nature and nanometric size. However, unavoidable inhomogeneities inherent to any material leads to pinning or repulsion of skyrmions that, in analogy to biology concepts, define the phenotype of the skyrmion-defect interaction, generating complexity in their motion and challenging their application as future bits of information. Here, we demonstrate that atom-by-atom manufacturing of multi-atomic defects, being antiferromagnetic or ferromagnetic, permits the breeding of their energy profiles, for which we build schematically a Punnet-square. As established from first-principles for skyrmions generated in PdFe bilayer on Ir(111) surface, the resulting interaction phenotype is rich. It can be opposite to the original one and eventually be of dual pinning-repulsive nature yielding energy landscapes hosting multi-domains. This is dictated by the stacking site, geometry, size and chemical nature of the adsorbed defects, which control the involved magnetic interactions. This work provides new insights towards the development of disruptive device architectures incorporating defects into their design aiming to control and guide skyrmions.

3.
Nat Commun ; 11(1): 1602, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231203

RESUMEN

The viability of past, current and future devices for information technology hinges on their sensitivity to the presence of impurities. The latter can reshape extrinsic Hall effects or the efficiency of magnetoresistance effects, essential for spintronics, and lead to resistivity anomalies, the so-called Kondo effect. Here, we demonstrate that atomic defects enable highly efficient all-electrical detection of spin-swirling textures, in particular magnetic skyrmions, which are promising bit candidates in future spintronics devices. The concomitant impurity-driven alteration of the electronic structure and magnetic non-collinearity gives rise to a new spin-mixing magnetoresistance (XMRdefect). Taking advantage of the impurities-induced amplification of the bare transport signal, which depends on their chemical nature, a defect-enhanced XMR (DXMR) is proposed. Both XMR modes are systematised for 3d and 4d transition metal defects implanted at the vicinity of skyrmions generated in PdFe bilayer deposited on Ir(111). The ineluctability of impurities in devices promotes the implementation of defect-enabled XMR modes in reading architectures with immediate implications in magnetic storage technologies.

4.
Nat Commun ; 9(1): 4395, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348995

RESUMEN

Magnetic skyrmions are prime candidates for future spintronic devices. However, incorporating them as information carriers hinges on their interaction with defects ubiquitous in any device. Here we map from first-principles, the energy profile of single skyrmions interacting with single-atom impurities, establishing a generic shape as function of the defect's electron filling. Depending on their chemical nature, foreign 3d and 4d transition metal adatoms or surface implanted defects can either repel or pin skyrmions in PdFe/Ir(111) thin films, which we relate to the degree of filling of bonding and anti-bonding electronic states inherent to the proximity of the non-collinear magnetic structure. Similarities with key concepts of bond theories in catalysis and surface sciences imbue the universality of the shape of the interaction profile and the potential of predicting its interaction. The resulting fundamental understanding may give guidance for the design of devices with surface implanted defects to generate and control skyrmions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...