Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 125(47): 12972-12980, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34793159

RESUMEN

Envenomation via snakebites occurs largely in areas where it is harder to access the hospital. Its mortality rate and sequelae acquired by the survivors symbolize a big challenge for antivenom therapy. In particular, the homologous phospholipase A2 (Lys49-PLA2) proteins can induce myonecrosis and are not effectively neutralized by current treatments. Thus, by taking advantage of crystallographic structures of Bothrops moojeni Lys49-PLA2 complexed with VRD (varespladib) and AIN (aspirin), a quantum biochemistry study based on the molecular fractionation with conjugate cap scheme within the density functional theory formalism is performed to unveil these complexes' detailed interaction energies. The calculations revealed that important interactions between ligands and the Lys49-PLA2 pocket could occur up to a pocket radius of r = 6.5 (5.0 Å) for VRD (AIN), with the total interaction energy of the VRD ligand being higher than that of the AIN ligand, which is well-correlated with the experimental binding affinity. Furthermore, we have identified the role played by the amino acids LYS0069, LYS0049, LEU0005, ILE0009, CYS0029, GLY0030, HIS0048, PRO0018, ALA0019, CYS0045, TYR0052, TYR0022, PRO0125*, and PHE0126* (LYS0069, LYS0049, GLY0032, LEU0002, and LEU0005) in the VRD↔Lys49-PLA2 (AIN↔Lys49-PLA2) complex. Our simulations are a valuable tool to support the big challenge for neutralizing the damages in victims of snakebites.


Asunto(s)
Bothrops , Venenos de Crotálidos , Fosfolipasas A2/química , Animales , Venenos de Crotálidos/enzimología
2.
Phys Chem Chem Phys ; 23(40): 23233-23241, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623361

RESUMEN

Ethionamide (ETH) is a high-profile drug for the treatment of patients with multidrug-resistant Mycobacterium tuberculosis and, in order to produce its inhibitory effects, it needs to be bioactivated by monooxygenase EthA. This process is under the control of the transcriptional repressors EthR and EthR2, so that their inhibition results in the boosting of ethionamide activation. Herein, through crystallographic data and computer simulations, we calculated the interaction binding energies of four inhibitors with improved in vitro potency, namely BDM76060 (PDB ID: 6HS1), BDM72201 (PDB ID: 6HRX), BDM76150 (PDB ID: 6HS2) and BDM72719 (PDB ID: 6HRY), in complexes with the transcriptional repressor EthR2, using density functional theory (DFT) within the molecular fractionation with conjugated caps (MFCC) approach. It was observed that these ligands share the same binding site within a 10.0 Å radius of the EthR2 protein; however, their structural particularities have a significant impact on the global energies of systems. The BDM72201 and BDM72719 components are weakly attached to the binding site, while BDM76060 and BDM76150 components produce stronger bonds, corroborating with experimental studies demonstrating that BDM76060 and BDM76150 are more successful in producing inhibitory effects. BDM76060 and BDM76150 have many functional groups that increase the contact surface with the protein and attract a more significant number of amino acid residues, being able to produce polarities that generate stronger interactions. In the current scenario of a growing number of cases of bacterial resistance, the obtained data can be used to guide clinical trials of these inhibitors and other inhibitors that act on the alternative EthR2 pathway, focusing on improving the activity of ethionamide, its effectiveness, a reduction in the treatment time and exposure to cytotoxic effects.


Asunto(s)
Antituberculosos/química , Etionamida/química , Proteínas Represoras/química , Antituberculosos/metabolismo , Antituberculosos/uso terapéutico , Sitios de Unión , Teoría Funcional de la Densidad , Etionamida/metabolismo , Etionamida/uso terapéutico , Humanos , Ligandos , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/metabolismo , Proteínas Represoras/metabolismo , Tuberculosis/tratamiento farmacológico
3.
Phys Chem Chem Phys ; 23(37): 21207-21217, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34533552

RESUMEN

We investigate the interaction between the programmed cell death protein 1 (PD-1) and the programmed cell death ligand 1 (PD-L1), as well as the immuno-oncological drugs pembrolizumab (PEM), and nivolumab (NIV), through quantum chemistry methods based on the Density Functional Theory (DFT) and the molecular fractionation with conjugate caps (MFCC) scheme, in order to map their hot-spot regions. Our results showed that the total interaction energy order of the three complexes is in good agreement with the experimental binding affinity order: PD-1/PEM > PD-1/NIV > PD-1/PD-L1. Besides, a detailed investigation revealed the energetically most relevant residue-residue pairs-interaction for each complex. Our computational results give a better understanding of the interaction mechanism between the protein PD-1 and its ligands (natural and inhibitors), unleashing the immune surveillance to destroy the cancer cells by decreasing their immune evasion. They are also an efficient alternative towards the development of new small-molecules and antibody-based drugs, pointing out to new treatments for cancer therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Antígeno B7-H1/metabolismo , Nivolumab/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/química , Teoría Funcional de la Densidad , Humanos , Ligandos , Receptor de Muerte Celular Programada 1/química , Receptor de Muerte Celular Programada 1/inmunología , Unión Proteica , Estructura Terciaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...