Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 4(4): e5212, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381334

RESUMEN

Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.


Asunto(s)
Genes Fúngicos , Nicotinamidasa/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulación hacia Arriba , Longevidad/genética , Resonancia Magnética Nuclear Biomolecular
2.
EMBO J ; 26(21): 4555-65, 2007 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17932489

RESUMEN

During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.


Asunto(s)
Candida/genética , Secuencia de Bases , Genes Fúngicos , Código Genético , Técnicas Genéticas , Genoma Fúngico , Genómica , Lisina/análogos & derivados , Lisina/genética , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica , Saccharomyces cerevisiae/genética , Selenocisteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA