Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895742

RESUMEN

Cylindrical specimens are of great interest in analyzing mechanical elements' behavior and investigating phenomena with biaxial loads. It is necessary to identify the behavior of the crack front along the thickness to interpret these results, which are usually based on the hypothesis of a straight crack and the observation of the outer face of the crack front. Based on the work carried out on compact tension type specimens, this work proposes adapting this methodology to cylindrical specimens, adapting the previous finite element models. Cylindrical specimens provide an asymmetric behavior influenced by the radius, where the CT (compact tensile) specimen can be considered the extreme infinite radius case. Combinations of the load level and radius values help us simulate the crack's behavior under intermediate hypotheses between a plane crack theory and a three-dimensional one. The plastic strain around the crack front will be analyzed as a function of the thickness and the load level applied. The results allow us to validate the numerical methodology and establish the differentiated behaviors of the plastic zones close to the outer and inner radii.

2.
Membranes (Basel) ; 12(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35323765

RESUMEN

A new, non-destructive methodology is proposed in this work in order to determine the mechanical properties of membrane using vibro-acoustic tests. This procedure is based on the dynamic analysis of the behavior of the membrane. When the membrane is subjected to a sound excitation it responds by vibrating based on its modal characteristics and this modal parameter is directly related to its mechanical properties. The paper is structured in two parts. First, the theoretical bases of the test are presented. The interaction between the sound waves and the membrane (mechano-acoustic coupling) is complex and requires meticulous study. It was broadly studied by means of numerical simulations. A summary of this study is shown. Aspects, such as the position of the sound source, the measuring points, the dimensions of the membrane, the frequency range, and the magnitudes to be measured, among others, were evaluated. The validity of modal analysis curve-fitting techniques to extract the modal parameter from the data measures was also explored. In the second part, an experimental test was performed to evaluate the validity of the method. A membrane of the same material with three different diameters was measured with the aim of estimating the value of the Young's modulus. The procedure was applied and satisfactory results were obtained. Additionally, the experiment shed light on aspects that must be taken account in future experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...