Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271222

RESUMEN

In this report, we describe the development and initial validation of novel SARS-COV-2 Omicron-specific reactions that enable the identification of Omicron (BA.1) and BA.2 variants. Mutations that are either shared by both BA.1 and BA.2, or are exclusive for BA.1 or for BA.2 were identified by bioinformatic analysis, and corresponding probe-based quantitative PCR reactions were developed to identify them. We show that multiplex combinations of these reactions provide a single-reaction identification of the sample as BA.1, BA.2, or as non-Omicron SARS-COV-2. All four reactions described herein have a sensitivity of less than ten copies per reaction, and are amendable for multiplexing. The results of this study suggest that the new assays may be useful for testing both clinical and environmental samples to differentiate between these two variants.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270948

RESUMEN

BACKGROUNDFollowing the emergence of the Omicron variant of concern, we investigated immunogenicity, efficacy and safety of BNT162b2 or mRNA1273 fourth dose in an open-label, clinical intervention trial. METHODSPrimary end-points were safety and immunogenicity and secondary end-points were vaccine efficacy in preventing SARS-CoV-2 infections and COVID-19 symptomatic disease. The two intervention arms were compared to a matched control group. Eligible participants were healthcare-workers (HCW) vaccinated with three BNT162b2 doses, and whose IgG antibody levels were [≤]700 BAU (40-percentile). IgG and neutralizing titers, direct neutralization of live VOCs, and T-cell activation were assessed. All participants were actively screened for SARS-CoV-2 infections on a weekly basis. RESULTSOf 1050 eligible HCW, 154 and 120 were enrolled to receive BNT162b2 and mRNA1273, respectively, and compared to 426 age-matched controls. Recipients of both vaccine types had a [~]9-10-fold increase in IgG and neutralizing titers within 2 weeks of vaccination and an 8-fold increase in live Omicron VOC neutralization, restoring titers to those measured after the third vaccine dose. Breakthrough infections were common, mostly very mild, yet, with high viral loads. Vaccine efficacy against infection was 30% (95%CI:-9% to 55%) and 11% (95%CI:-43% to +43%) for BNT162b2 and mRNA1273, respectively. Local and systemic adverse reactions were reported in 80% and 40%, respectively. CONCLUSIONSThe fourth COVID-19 mRNA dose restores antibody titers to peak post-third dose titers. Low efficacy in preventing mild or asymptomatic Omicron infections and the infectious potential of breakthrough cases raise the urgency of next generation vaccine development. Trial registration numberclicaltrials.gov: NCT05231005, NCT05230953

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267670

RESUMEN

Using isolates of SARS-CoV-2 WT, Beta, Delta and most importantly Omicron we studied the capability of the BNT162b2 vaccine given in two or three doses to neutralize major SARS-CoV-2 variants of concern (VOC). We demonstrate low neutralization efficiency against delta and wild-type for vaccines with more than 5 months following the second BNT162b2 dose, with no neutralization efficiency against Omicron. We demonstrate the importance of a third dose, by showing a 100-fold increase in neutralization efficiency of Omicron following a third dose, with a 4-fold reduced neutralization compared to that against the Delta VOC. The durability of the effect of the third dose is yet to be determined.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-452809

RESUMEN

The global spread of SARS-CoV-2 led to the most challenging pandemic in this century, posing major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SASR-CoV-2 can provide insights into the virus pathogenesis, and facilitates the development of novel broad-spectrum host-directed therapeutics. Here, employing genome-scale CRISPR screens, we provide a comprehensive data-set of cellular factors that are exploited by WT-SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. These screens identified known and novel host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination and Heparan sulfate biogenesis. In addition, the host phosphatidylglycerol biosynthesis processes appeared to have major anti-viral functions. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant, providing a possible explanation for the increased infectivity of this variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential pro-viral gene for all variants inspected. We revealed that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals showed an elevated level of GATA6, indicating the important role GATA6 may be playing in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and consequently to inhibition of the viral infectivity. Overall, we show GATA6 represents a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258081

RESUMEN

BackgroundIvermectin, an anti-parasitic agent, also has anti-viral properties. Our aim was to assess whether ivermectin can shorten the viral shedding in patients at an early-stage of COVID-19 infection. MethodsThe double-blinded trial compared patients receiving ivermectin 0{middle dot}2 mg/kg for 3 days vs. placebo in non-hospitalized COVID-19 patients. RT-PCR from a nasopharyngeal swab was obtained at recruitment and then every two days. Primary endpoint was reduction of viral-load on the 6th day (third day after termination of treatment) as reflected by Ct level>30 (non-infectious level). The primary outcome was supported by determination of viral culture viability. ResultsEighty-nine patients were eligible (47 in ivermectin and 42 in placebo arm). Their median age was 35 years. Females accounted for 21{middle dot}6%, and 16{middle dot}8% were asymptomatic at recruitment. Median time from symptom onset was 4 days. There were no statistical differences in these parameters between the two groups. On day 6, 34 out of 47 (72%) patients in the ivermectin arm reached the endpoint, compared to 21/ 42 (50%) in the placebo arm (OR 2{middle dot}62; 95% CI: 1{middle dot}09-6{middle dot}31). In a multivariable logistic-regression model, the odds of a negative test at day 6 was 2.62 time higher in the ivermectin group (95% CI: 1{middle dot}06-6{middle dot}45). Cultures at days 2 to 6 were positive in 3/23 (13{middle dot}0%) of ivermectin samples vs. 14/29 (48{middle dot}2%) in the placebo group (p=0{middle dot}008). ConclusionsThere were significantly lower viral loads and viable cultures in the ivermectin group, which could lead to shortening isolation time in these patients. The study is registered at ClinicalTrials.gov NCT 044297411.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-438035

RESUMEN

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...