Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(735): eadi7558, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381846

RESUMEN

Infections caused by nontuberculous mycobacteria have increased more than 50% in the past two decades and more than doubled in the elderly population. Mycobacterium abscessus (Mab), one of the most prevalent of these rapidly growing species, is intrinsically resistant to numerous antibiotics. Current standard-of-care treatments are not satisfactory, with high failure rate and notable adverse effects. We report here a potent anti-Mab compound from the flexible molecular framework afforded by conjugated oligoelectrolytes (COEs). A screen of structurally diverse, noncytotoxic COEs identified a lead compound, COE-PNH2, which was bactericidal against replicating, nonreplicating persisters and intracellular Mab.COE-PNH2 had low propensity for resistance development, with a frequency of resistance below 1.25 × 10-9 and showed no detectable resistance upon serial passaging. Mechanism of action studies were in line with COE-PNH2 affecting the physical and functional integrity of the bacterial envelope and disrupting the mycomembrane and associated essential bioenergetic pathways. Moreover, COE-PNH2 was well-tolerated and efficacious in a mouse model of Mab lung infection. This study highlights desirable in vitro and in vivo potency and safety index of this COE structure, which represents a promising anti-mycobacterial to tackle an unmet medical need.


Asunto(s)
Mycobacterium abscessus , Mycobacterium , Humanos , Anciano , Animales , Ratones , Modelos Animales de Enfermedad , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
J Med Chem ; 66(20): 14303-14314, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37798258

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause high-morbidity infections. Due to its robust, flexible genome and ability to form biofilms, it can evade and rapidly develop resistance to antibiotics. Cationic conjugated oligoelectrolytes (COEs) have emerged as a promising class of antimicrobials. Herein, we report a series of amidine-containing COEs with high selectivity for bacteria. From this series, we identified 1b as the most active compound against P. aeruginosa (minimum inhibitory concentration (MIC) = 2 µg/mL) with low cytotoxicity (IC50 (HepG2) = 1024 µg/mL). The activity of 1b was not affected by known drug-resistant phenotypes of 100 diverse P. aeruginosa isolates. Moreover, 1b is bactericidal with a low propensity for P. aeruginosa to develop resistance. Furthermore, 1b is also able to inhibit biofilm formation at subinhibitory concentrations and kills P. aeruginosa in established biofilms. The in vivo efficacy of 1b was demonstrated in biofilm-associated murine wound infection models.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
3.
Chem Commun (Camb) ; 59(81): 12172-12175, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747122

RESUMEN

We report a series of membrane-intercalating conjugated oligoelectrolytes (MICOEs) to probe how structural features impact bacterial membrane integrity and antibiotic activity. Minimum inhibitory concentrations (MICs) and outer membrane (OM) permeability correlated to different structural parameters suggesting that the antimicrobial mechanism is not related to OM permeabilization. However, lipid order parameters and MICs correlated to the same structural feature suggesting a possible link.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Permeabilidad de la Membrana Celular , Pruebas de Sensibilidad Microbiana
4.
EBioMedicine ; 89: 104461, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801104

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS: Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS: We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION: The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING: U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Sepsis , Ratones , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/microbiología , Antiinfecciosos/farmacología , Bacterias , Sepsis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple , Mamíferos
5.
Sci Adv ; 9(2): eade2996, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36630497

RESUMEN

We developed a series of transmembrane conjugated oligoelectrolytes (COEs) with tunable optical emissions from the UV to the near IR to address the false-positive problem when detecting nanometer-sized extracellular vesicles (EVs) by flow cytometry. The amphiphilic molecular framework of COEs is defined by a linear conjugated structure and cationic charged groups at each terminal site. Consequently, COEs have excellent water solubility and the absence of nanoaggregates at concentrations up to 50 µM, and unbound COE dyes can be readily removed through ultrafiltration. These properties enable unambiguous and simple detection of COE-labeled small EVs using flow cytometry with negligible background signals. We also demonstrated the time-lapsed tracking of small EV uptake into mammalian cells and the endogenous small EV labeling using COEs. Briefly, COEs provide a class of membrane-targeting dyes that behave as biomimetics of the lipid bilayer and a general and practical labeling strategy for nanosized EVs.

6.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711650

RESUMEN

In recent years, the concern from the global climate change has driven an urgent need to develop clean energy technologies that do not involve combustion process that emit carbon into the atmosphere. A promising concept is microbial fuel cells that utilize bacteria as electron donors in a bio-electrochemical cell performing a direct electron transfer via conductive protein complexes or by secretion of redox active metabolites such as quinone or phenazine derivatives. In the case of photosynthetic bacteria (cyanobacteria) electrons can also be extracted from the photosynthetic pathway mediated mostly by NADH and NADPH. In this work, we show for the first time that the intact non-photosynthetic bacteria Escherichia coli can produce photocurrent that is enhanced upon addition of an exogenous electron mediator. Furthermore, we apply 2D-fluorescence measurement to show that NADH is released from the bacterial cells, which may apply as a native electron mediator in microbial fuel cells.

7.
ChemistryOpen ; 11(2): e202100260, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35133087

RESUMEN

Cationic conjugated oligoelectrolytes (COEs) are a class of compounds that can be tailored to achieve relevant in vitro antimicrobial properties with relatively low cytotoxicity against mammalian cells. Three distyrylbenzene-based COEs were designed containing amide functional groups on the side chains. Their properties were compared to two representative COEs with only quaternary ammonium groups. The optimal compound, COE2-3C-C3-Apropyl, has an antimicrobial efficacy against Escherichia coli with an MIC=2 µg mL-1 , even in the presence of human serum albumin low cytotoxicity (IC50 =740 µg mL-1 ) and minimal hemolytic activity. Moreover, we find that amide groups increase interactions between COEs and a bacterial lipid mimic based on calcein leakage assay and allow COEs to readily permeabilize the cytoplasmic membrane of E. coli. These findings suggest that hydrogen bond forming moieties can be further applied in the molecular design of antimicrobial COEs to further improve their selectivity towards bacteria.


Asunto(s)
Antiinfecciosos , Escherichia coli , Amidas/análisis , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/análisis , Antiinfecciosos/química , Bacterias , Membrana Celular , Bacterias Gramnegativas , Humanos , Mamíferos
8.
J Am Chem Soc ; 143(45): 18917-18931, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739239

RESUMEN

New antibiotics are needed to battle growing antibiotic resistance, but the development process from hit, to lead, and ultimately to a useful drug takes decades. Although progress in molecular property prediction using machine-learning methods has opened up new pathways for aiding the antibiotics development process, many existing solutions rely on large data sets and finding structural similarities to existing antibiotics. Challenges remain in modeling unconventional antibiotic classes that are drawing increasing research attention. In response, we developed an antimicrobial activity prediction model for conjugated oligoelectrolyte molecules, a new class of antibiotics that lacks extensive prior structure-activity relationship studies. Our approach enables us to predict the minimum inhibitory concentration for E. coli K12, with 21 molecular descriptors selected by recursive elimination from a set of 5305 descriptors. This predictive model achieves an R2 of 0.65 with no prior knowledge of the underlying mechanism. We find the molecular representation optimum for the domain is the key to good predictions of antimicrobial activity. In the case of conjugated oligoelectrolytes, a representation reflecting the three-dimensional shape of the molecules is most critical. Although it is demonstrated with a specific example of conjugated oligoelectrolytes, our proposed approach for creating the predictive model can be readily adapted to other novel antibiotic candidate domains.

9.
Angew Chem Int Ed Engl ; 59(46): 20333-20337, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32596843

RESUMEN

The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.


Asunto(s)
Membrana Celular/efectos de la radiación , Electrólitos/química , Luz , Compuestos Azo/química , Espectroscopía de Resonancia por Spin del Electrón , Isomerismo , Membrana Dobles de Lípidos/química , Estructura Molecular , Espectrofotometría Ultravioleta
10.
Chem Sci ; 11(31): 8138-8144, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34123085

RESUMEN

A series of cationic conjugated oligoelectrolytes (COEs) was designed to understand how variations in molecular dimensions impact the relative activity against bacteria and mammalian cells. These COEs kept a consistent distyrylbenzene framework but differed in the length of linker between the core and the cationic site and the length of substitute on the quaternary ammonium functioned group. Their antimicrobial efficacy, mammalian cell cytotoxicity, hemolytic activity, and cell association were determined. We find that hydrophobicity is a factor that controls the degree of COE association to cells, but in vitro efficacy and cytotoxicity depend on more subtle structural features. COE2-3C-C4butyl was found to be the optimal structure with a minimum inhibitory concentration (MIC) of 4 µg mL-1 against E. coli K12, low cytotoxicity against HepG2 cells and negligible hemolysis of red blood cells, even at 1024 µg mL-1. A time-kill kinetics study of COE2-3C-C4butyl against E. coli K12 demonstrates bactericidal activity. These findings provide the first systematic investigation of how COEs may be modulated to achieve low mammalian cell cytotoxicity with the long-range perspective of finding candidates suitable for developing a broad-spectrum antimicrobial agent.

11.
RSC Adv ; 8(70): 39849-39853, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-35558200

RESUMEN

A three-dimensional conjugated oligoelectrolyte (COE) bearing a [2.2]paracyclophane unit (COE2-3-pCp) was synthesized. Its biological activity was determined both in vivo and in silico within the context of membrane perturbation and biocompatibility. Molecular dynamics simulations indicate that, compared to its linear analog (COE2-3C), COE2-3-pCp introduces more lipid disorder with higher extent of membrane thinning. COE2-3-pCp also exhibits a higher MIC towards E. coli K12 and yeast, while maintaining similar levels of membrane permeabilization. These findings suggest a new design of COEs as biocompatible cell permeabilizers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...