Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Total Environ ; 934: 173313, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761952

RESUMEN

Taiwan, identified as pivotal in the Asian drug trafficking chain, has been experiencing a surge in illicit drug-related issues. Wastewater-based epidemiology (WBE) has emerged as a promising approach for comprehensive evaluation of actual illicit drug usage. This study presents the first WBE investigation of illicit drug consumption in Taiwan based on the analysis of wastewater from four wastewater treatment plants (WWTPs) in the Taipei metropolitan area. Additionally, it demonstrates a high correlation between the amounts of illicit drugs seized and influent concentrations over an extended period of time. The reliability of solid-phase extraction and analysis via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated for 16 illicit drugs (methamphetamine, ketamine, cocaine, codeine, methadone, morphine, meperidine, fentanyl, sufentanil, para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), 3,4-methylenedioxymethamphetamine (MDMA), cathinone, methcathinone, mephedrone (MEPH), and 4-methylethcathinone (4-MEC)). Methamphetamine, ketamine, and 4-MEC were consistently detected in all wastewater samples, underscoring their prevalence in the Taipei metropolitan area. Biochemical oxygen demand (BOD) and ammonia nitrogen (ammonia N) were employed to reduce uncertainty in estimations of population size during back-calculation of illicit drug consumption. The results indicate that methamphetamine was the most consumed drug (175-740 mg day-1 1000 people-1), followed by ketamine (22-280 mg day-1 1000 people-1). In addition, urban-related WWTPs exhibited higher consumption of methamphetamine and ketamine than did the suburban-related WWTP, indicating distinct illicit drug usage patterns between suburban and urban regions. Moreover, an examination of temporal trends in wastewater from the Dihua WWTP revealed a persistent predominance of ketamine and methamphetamine, consistent with statistical data pertaining to seizure quantities and urine test results. The study provides encouraging insight into spatial and temporal variations in illicit drug usage in the Taipei metropolitan area, emphasizing the complementary role of WBE in understanding trends in illicit drug abuse.


Asunto(s)
Drogas Ilícitas , Aguas Residuales , Contaminantes Químicos del Agua , Taiwán/epidemiología , Aguas Residuales/química , Drogas Ilícitas/análisis , Contaminantes Químicos del Agua/análisis , Detección de Abuso de Sustancias/métodos , Humanos , Monitoreo del Ambiente , Espectrometría de Masas en Tándem , Ciudades
2.
Chemosphere ; 357: 142039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621488

RESUMEN

The coexistence of free chlorine and bromide under sunlight irradiation (sunlight/FC with Br-) is unavoidable in outdoor seawater swimming pools, and the formation of brominated disinfection byproducts could act more harmful than chlorinated disinfection byproducts. In this study, benzotriazole was selected as a model compound to investigate the degradation rate and the subsequent formation of disinfection byproducts via sunlight/FC with Br- process. The rate constants for the degradation of benzotriazole under pseudo first order conditions in sunlight/FC with Br- and sunlight/FC are 2.3 ± 0.07 × 10-1 min-1 and 6.0 ± 0.7 × 10-2 min-1, respectively. The enhanced degradation of benzotriazole can be ascribed to the generation of HO•, bromine species, and reactive halogen species (RHS) during sunlight/FC with Br-. Despite the fact that sunlight/FC with Br- process enhanced benzotriazole degradation, the reaction results in increasing tribromomethane (TBM) formation. A high concentration (37.8 µg/L) of TBM was detected in the sunlight/FC with Br-, which was due to the reaction of RHS. The degradation of benzotriazole was notably influenced by the pH value (pH 4 - 11), the concentration of bromide (0 - 2 mM), and free chlorine (1 - 6 mg/L). Furthermore, the concentration of TBM increased when the free chlorine concentrations increased, implying the formation potential of harmful TBM in chlorinated seawater swimming pools.


Asunto(s)
Bromuros , Cloro , Luz Solar , Triazoles , Contaminantes Químicos del Agua , Triazoles/química , Bromuros/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cloro/química , Desinfección , Trihalometanos/química , Agua de Mar/química , Desinfectantes/química , Desinfectantes/análisis
3.
Environ Sci Technol ; 58(3): 1648-1658, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175212

RESUMEN

The semiconductor industry has claimed that perfluorooctanesulfonate (PFOS), a persistent per- and polyfluoroalkyl substance (PFAS), has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. This study aimed to develop a nontarget approach to discovering diverse PFAS substitutions used in semiconductor manufacturing. A distinct fragment-based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 20 identified PFAS spanning 12 subclasses, 15 were reported in semiconductor sewage for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 µg/L, 141 µg/L, and 83.5 µg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in all samples, ranging from 0.004 to 19.9 µg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%-82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 µg/L (90%), while that of PFAAs, which have typically received attention, was only 205 µg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Tensoactivos , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
4.
J Hazard Mater ; 465: 133031, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008053

RESUMEN

Urine source separation, as an innovative concept for the reuse of microlevel nutrients in human urine, has drawn increasing attention recently. Consequently, removing coexisting pharmaceuticals in urine is necessary for further reuse. This study is the first to apply the solar-driven persulfate process (Solar/PS) to the investigation of cephradine (CFD) and caffeine (CAF) degradation in synthetic human urine. The results showed that significantly more degradation of CFD and CAF occurs with the Solar/PS process than with persulfate oxidation and direct sunlight photolysis, respectively. The generated reactive species ·OH, SO4·-, O2·- and 1O2 were identified in the Solar/PS process. While SO4·- played a dominant role at pH 6, it played a minor role at pH 9 due to the lower amount generated under alkaline conditions. The presence of chloride and ammonia negatively impacted the photodegradation of both compounds. In contrast, bicarbonate exhibited no effect on CAF but enhanced CFD degradation owing to its amino-acid-like structure, which has a higher reactivity toward CO3·-. Although total organic carbon (TOC) was partially mineralized after 6 h of operation, no Microtox® toxicity was observed.


Asunto(s)
Cefradina , Contaminantes Químicos del Agua , Humanos , Cafeína , Luz Solar , Fotólisis , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Sulfatos/química
5.
Water Res ; 233: 119738, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858017

RESUMEN

Sunlight-induced photoirradiation of chlorine (sunlight/chlorine) can be observed in outdoor swimming pools and open-channel disinfection units for wastewater treatment. In this study, the degradation of ketamine, an environmentally persistent pharmaceutical, under sunlight irradiation in the presence of a low concentration of chlorine (1 mg/L as Cl2) was investigated to elucidate the evolution of reactive species and their contribution to ketamine removal. •OH dominates the initial stage of sunlight/chlorine; however, after chlorine depletion, reactions still progress with an observed rate constant (kobs = 7.6 ± 0.50 × 10-3 min-1) an order of magnitude higher than photolysis alone (kobs = 2.9 ± 0.15 × 10-4 min-1). When chlorine is depleted, O3 becomes the major reactant that degrades ketamine. High O3 yields were found in both sunlight/HOCl (12.5 ± 0.5% at pH 5) and sunlight/ClO- (10 ± 1% at pH 10) systems. At sub-µM levels, O3 resulted in substantial removal of ketamine, and even faster rates were observed in the presence of sunlight. A kinetic model was also established, and evaluate time-dependent concentration levels during sunlight/chlorine. The model simulation showed that the cumulative O3 concentration could reach 0.91 µM, and O3 contributed 31% ketamine removal during the sunlight/chlorine process. Primary and secondary amine functional groups were demonstrated to be the reaction sites of O3; other pharmaceuticals, such as atenolol and metoprolol, underwent similar phenomena. In addition, the experimental and model results further indicated that sunlight/ClO2- or ClO2 also participates in the degradation of ketamine with a minor role; trace amounts (below nM level) of ClO2- and ClO2 were estimated by the simulation.


Asunto(s)
Compuestos de Cloro , Ketamina , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Luz Solar , Cloruros , Desinfección/métodos , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Óxidos
6.
J Hazard Mater ; 451: 131113, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907060

RESUMEN

Over the past decades, the presence of pharmaceutical emerging contaminants in water bodies is receiving increasing attention due to the high concentration detected from wastewater effluent. Water systems contain a wide range of components coexisting together, which increases the difficulty of removing pollutants from the water. In order to achieve selective photodegradation and to enhance the photocatalytic activity of the photocatalyst on emerging contaminants, a Zr-based metal-organic framework (MOF), termed VNU-1 (VNU represents Vietnam National University) constructed with ditopic linker 1,4-bis(2-[4-carboxyphenyl]ethynyl)benzene (H2CPEB), with enlarged pore size and ameliorated optical properties, was synthesized and applied in this study. When compared to UiO-66 MOFs, which only had 30% photodegradation of sulfamethoxazole, VNU-1 had 7.5 times higher adsorption and reached 100% photodegradation in 10 min. The tailored pore size of VNU-1 resulted in size-selective properties between small-molecule antibiotics and big-molecule humic acid, and VNU-1 maintained high photodegradation performance after 5 cycles. Based on the toxicity test and the scavenger test, the products after photodegradation had no toxic effect on V. fischeri bacteria, and the superoxide radical (·O2-) and holes (h+) generated from VNU-1 dominated the photodegradation reaction. These results demonstrate that VNU-1 is a promising photocatalyst and provide a new insight for developing MOF photocatalyst to remove emerging contaminants in the wastewater systems.

7.
Chemosphere ; 309(Pt 1): 136677, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191762

RESUMEN

Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are the most commonly used UV stabilizers and recalcitrant contaminants that are widely distributed in aquatic environments. The novelty of this study was to investigate the role of RCSs in the enhanced degradation of BT and 5-MeBT during the sunlight/free chlorine process. The results showed that sunlight/free chlorine could enhance the degradation of BT and 5-MeBT compared with that obtained with sunlight irradiation and chlorination alone, and this process was well described by pseudo-first-order kinetics. The degradation rate constants of BT and 5-MeBT during sunlight/free chlorine treatment at pH 7 were 0.094 ± 0.001 min-1 and 0.134 ± 0.002 min-1, respectively. The degradation rates further increased with increases in the chlorine dosage and under alkaline conditions (3.818 ± 0.243 min-1 for BT and 7.754 ± 0.716 min-1 for 5-MeBT at pH 9). The enhanced removal obtained during the sunlight/free chlorine process could be attributed to the generation of HO• and reactive chlorine species (RCSs), such as Cl• and ClO•. Under alkaline conditions, RCSs were the dominant reactive species, and their contribution increased from 21.2% to 98.7% with increases in the pH from 7 to 9; this phenomenon was due to changes in free chlorine and BT speciation. Radical scavenging tests further verified that BT was mainly decomposed by ClO•, and ClO• showed high reactivity toward deprotonated BT through second-order rate constant estimation. A byproduct analysis demonstrated that BT underwent hydroxylation and chlorine substitution, and a high yield of 1-chlorobenzotriazole (1-ClBT) formation was observed. Even though the sunlight/free chlorine process resulted in a low level of mineralization, no Microtox® toxicity was detected in the treated solutions. Briefly, the significant contribution of ClO• to BT removal under alkaline conditions implies that sunlight/free chlorine could be utilized in a broader range of treatment conditions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro/análisis , Luz Solar , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Rayos Ultravioleta , Cinética , Cloruros , Oxidación-Reducción
8.
J Hazard Mater ; 438: 129494, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792433

RESUMEN

MnO2, which is ubiquitous in soil and sediment in natural water environments, may play an important role in the photolysis of contaminants by sunlight, but the interactions between MnO2 and contaminants in aqueous environments under sunlight irradiation have not been investigated. In this study, the simultaneous presence of sunlight and MnO2 significantly enhanced the degradation efficiency of methotrexate (MTX). Accordingly, we hypothesized that the overall enhancement of this synergistic reaction is due to the additional production of Mn(III) via MTX self-sensitized photolysis. The pseudo-first-order kinetic model for the photoreaction of MTX with MnO2 (Light/MTX+MnO2) during the initial reaction kinetics (0-2 h) revealed a rate constant of 0.43 h1 ([MTX] = 20 µM, [MnO2] = 200 µM, and pH = 7), which is faster than that obtained with sunlight alone (0.14 h1) or MnO2 alone; Mn(II) and Mn(III) were formed at concentrations of 24.3 ± 1.0 µM and 14.8 ± 1.4 µM, respectively. Dissolved Mn(III) species were identified as the main oxidant species responsible for the degradation of MTX. Two reaction pathways for the production of Mn(III) through Light/MTX+MnO2 were proposed; MTX acts as a photosensitizer to produce 3MTX* responsible for the reduction of MnO2 to Mn(III), whereas O2• participates in the oxidation of Mn(Ⅱ) to Mn(Ⅲ). Byproduct analysis demonstrated that the Mn(III) generated in the Light/MTX+MnO2 system enhances C-N bond cleavage, ketonization, and hydrolysis pathways in the MTX transformation.


Asunto(s)
Compuestos de Manganeso , Contaminantes Químicos del Agua , Cinética , Compuestos de Manganeso/química , Metotrexato , Oxidación-Reducción , Óxidos/química , Fotólisis , Agua , Contaminantes Químicos del Agua/química
10.
NPJ Biofilms Microbiomes ; 8(1): 4, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087050

RESUMEN

Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.


Asunto(s)
Aterosclerosis , Ajo , Microbioma Gastrointestinal , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Disulfuros , Humanos , Metilaminas , Ratones , Ratones Endogámicos C57BL , Óxidos , Ácidos Sulfínicos
11.
Chemosphere ; 290: 133352, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34922962

RESUMEN

Microplastics (MPs) have received much attention in recent years because of their continuous photoaging process in aquatic environments. However, little research has been conducted on the photochemistry of aged microplastics and the associated effects on coexisting pharmaceuticals. This study investigated the photodegradation of cimetidine via aged polystyrene microplastics (PS-MPs) with different aging times (0-7 d) under simulated sunlight irradiation (700 W/m2). PS-MPs with 5 d of aging time resulted in much faster cimetidine degradation (>99%) after 2 h of irradiation than pristine PS-MPs (<8%). The enhanced photodegradation of cimetidine by aged PS-MPs was related to the increase in chromophoric oxygenated groups (CO, C-O) followed by redshifted absorbance through the photoaging process, which induced the formation of the environmentally persistent free radicals (EPFRs) OH, 1O2 and 3PS*. However, only 1O2 and 3PS* contributed to enhanced cimetidine photodegradation, with 1O2 playing a more important role in our case. This work also demonstrated that other compounds that are susceptible to indirect photolysis, such as codeine and morphine, are likewise significantly degraded under irradiation in the presence of aged PS-MPs. Although previous studies have reported how MPs can increase the persistence of contaminants, this study demonstrates that MPs can serve as photosensitizers and alter the fate of coexisting pharmaceuticals in aquatic environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Cimetidina , Fotólisis , Fármacos Fotosensibilizantes , Plásticos , Poliestirenos
12.
Water Res ; 207: 117805, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736002

RESUMEN

The global distribution and environmental persistence of perfluoroalkyl acids (PFAAs) has been considered a critical environmental concern. In this work, we successfully fabricated a graphene oxide-titanium dioxide (GOTiO2) photoelectrode for perfluorooctane sulfonate (PFOS) degradation in a photoelectrochemical (PEC) system. The results reveal that a 5 wt.% GOTiO2 anode possesses the optimal PEC performance, with a band gap (Eg) of 2.42 eV, specific surface area (SBET) of 72.6 m2 g-1 and specific capacitance (Cs) of 4.63 mF cm-2. In the PEC system, PFOS can be efficiently removed within 4 h of reaction time, with a pseudo-first-order rate constant of 0.0124 min-1, under the optimized conditions of current density = 20 mA cm-2, electrode distance = 5 mm, solution pH = 5.64, [PFOS]0= 0.5 µM and NaClO4 electrolyte concentration = 50 mM. The electron transfer pathway, hydroxyl radicals and superoxide radicals are all responsible for PFOS decomposition/transformation. New degradation pathways were identified; a total of 25 PFOS byproducts are reported in this work; and perfluoroalkane sulfonates (PFSAs), perfluorinated aldehydes (PFALs) and hydrofluorocarbons (HFCs) were identified for the first time. PFOS degradation involves the desulfonation pathway as the first step, followed by oxidation and subsequent defluorination, decarboxylation, decarbonylation, sulfonation, defluorination and hydroxylation. The results from this work also show that the reactivity of PFAAs is related to their carbon chain length, with shorter-chain PFAAs exhibiting a lower degradation rate. In a PFAA mixture, a decline in the degradation rate was observed for the shorter-chain-length PFAAs, suggesting stronger competitive inhibition and indicating stronger environmental recalcitrance during the treatment process. Novelty statement: Although many efforts have been made to identify perfluorooctane sulfonate (PFOS) degradation byproducts, previous studies were only able to identify byproducts that are related to perfluorinated carboxylic acids (PFCAs). This is the first study to elucidate the new PFOS degradation pathway; furthermore, this is the first report to identify byproducts containing sulfonate groups (perfluoroalkane sulfonates, PFSAs), aldehyde groups (perfluorinated aldehydes, PFALs), and hydrofluorocarbons (HFCs). This study further systematically explores how perfluoroalkyl acid (PFAA) degradation may be affected in the mixture system: shorter-chain-length PFAAs suffer stronger competitive inhibition in the photoelectrochemical (PEC) system. By utilizing the graphene oxide-titanium dioxide (GOTiO2) photoelectrode fabricated in this work, PFOS can be successfully decomposed during the PEC process for the first time.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ácidos Carboxílicos , Monitoreo del Ambiente , Fluorocarburos/análisis
13.
Chemosphere ; 271: 129507, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445022

RESUMEN

Algae is able to accelerate the photodegradation rate of contaminants under sunlight irradiation, and this process can be attributed to algal substances, namely, intracellular organic matter (IOM) and extracellular organic matter (EOM). This study aimed to investigate the efficiencies and mechanisms of the photodegradation of three pharmaceuticals - acetaminophen (ACE), codeine (COD) and cephradine (CFD) - in the presence of Chlorella vulgaris and its algal substances. The result shows that a much higher photodegradation rate of acetaminophen was obtained in the presence of IOM (kobs = 0.250 hr-1) than in the presence of EOM (kobs = 0.060 hr-1). The photodegradation mechanisms of acetaminophen were demonstrated and verified by scavenger experiments and probe tests. The major reactive species for acetaminophen photodegradation was triplet-state IOM (3IOM∗), which contributed 93.52% of the photodegradation, while ⋅OH was the secondary contributor (5.60%), with 1O2 contributing the least (0.88%). Chlorella vulgaris also effectively enhanced the photodegradation of codeine and cephradine. However, the photodegradation behaviors of codeine and cephradine in the presence of algal substances were different from those of acetaminophen, indicating that the photodegradation mechanisms might depend on the type of compound. This study not only demonstrates the effectiveness of algal substances in the photodegradation of acetaminophen, codeine and cephradine under sunlight irradiation but also provides a comprehensive study on the photodegradation mechanisms of acetaminophen in the presence of algal substances.


Asunto(s)
Chlorella vulgaris , Acetaminofén , Fotólisis
14.
Environ Sci Pollut Res Int ; 28(14): 18021-18034, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33410042

RESUMEN

4-Methylbenzylidene camphor (4-MBC), a widely used ultraviolet (UV) filter detected in various aquatic environments, has been shown to evoke estrogenic activity. In this study, the use of UV light-activated persulfate for 4-MBC degradation is evaluated for the first time. Our results showed that the combination of UV and persulfate (UV/persulfate) can significantly remove 4-MBC, with a pseudo-first-order rate constant (kobs) of 0.1349 min-1 under the conditions of [4-MBC]0 = 0.4 µM, [persulfate]0 = 12.6 µM, and initial pH = 7. The kobs and persulfate dose exhibited a linear proportional relationship in the persulfate dose range of 4.2-42 µM. The kobs remained similar at pH 5 and pH 7 but significantly decreased at pH 9. A radical scavenging test indicated that SO4-• was the dominant species in 4-MBC degradation; the second-order rate constant of SO4-• with 4-MBC was calculated to be (2.82 ± 0.05) × 109 M-1 s-1. During the UV/persulfate reaction, 4-MBC was continuously degraded, while SO4-• was gradually converted to SO42-. 4-MBC degradation involved the hydroxylation and demethylation pathways, resulting in the generation of transformation byproducts P1 (m/z 271) and P2 (m/z 243), respectively. The Microtox® acute toxicity test (Vibrio fischeri) showed increasing toxicity during the UV/persulfate degradation of 4-MBC. The 4-MBC degradation rate was markedly lower in outdoor swimming pool water than in deionized water. Graphical abstract.


Asunto(s)
Contaminantes Químicos del Agua , Alcanfor/análogos & derivados , Cinética , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
15.
RSC Adv ; 11(51): 32494-32504, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35495538

RESUMEN

In this study, the morphology and sorption behavior of polyethylene terephthalate (PET) microplastics during the aging process are investigated. To clarify the sorption mechanism of aged PET microplastics, the common sunblock 4-methylbenzylidene camphor (4-MBC) was chosen as the target contaminant, and UV irradiation was used for the laboratory aging simulation. The results show that oxygen-containing functional groups (carboxylic, carbonyl, ketone and hydroxyl groups) increase on the surface of aged PET microplastics. Based on density functional theory (DFT) simulations, the camphor part of 4-MBC acts as a hydrogen bond acceptor, whereas the carboxylic group on aged PET microplastics acts as a hydrogen bond donor. The formation of hydrogen bonding causes increased sorption of 4-MBC on aged PET microplastics. The sorption capacity increased from 5 to 11 µg g-1 for 50 ppb 4-MBC with 100 mg PET microplastics after a five-day aging process. Other environmental factors that affect sorption were also identified; a higher pH value and the presence of salinity reduced the amount of sorption. The sorption of virgin PET ranged from 8.0 to 3.4 µg g-1 and the sorption of aged PET ranged from 22 to 5 µg g-1 at pH 4 to 10. In the presence of salinity (10% seawater), the virgin PET sorption dropped to 2.1 µg g-1 while the aged PET sorption dropped to 4 µg g-1. A similar phenomenon was also observed in the sorption behavior under natural sunlight (the sorption of PET increased from 0.4 to 0.8 µg g-1 after 6 months of aging). The potential risk to ecosystems of aged PET microplastics under prolonged sunlight exposure in the natural environment could be greater than that predicted for virgin microplastics.

16.
RSC Adv ; 11(37): 23036-23044, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35480454

RESUMEN

Solar distillation is emerging as an environmentally friendly and energy-effective technology for clean water generation. However, bulk water heating and the possibly complex composition of water matrices of source water could undermine the system efficacy. In this study, an interfacial evaporation device consisting of activated carbon combined with P25 TiO2 as the top layer and polyethylene foam as the bottom layer (AC-P25/foam device) was established. With the excellent optical absorbance of AC and the heat localization effect contributed by the PE foam, the evaporation rate (r evp) of the device (r evp = 2.1 kg m-2 h-1) was improved by 209% and 71% compared with that of the water-only (r evp = 0.68 kg m-2 h-1) and conventional evaporation (i.e., submerged AC-P25) systems (r evp = 1.23 kg m-2 h-1), respectively. The reusability test showed the stable evaporation performance of AC-P25/foam within 7 cycles; this interfacial evaporation was also found to be less affected by suspended solids in water due to a reduction in the influence of light scattering. The AC-P25/foam device not only possessed photothermal ability for water distillation but was also able to prevent enrichment of volatile organic compounds (i.e., phenol) with ∼95% removal efficiency through adsorption and photocatalytic reactions under illumination. Additionally, an outdoor solar distillation test performed with synthetic saline water demonstrated the desalination ability of the AC-P25/foam device, with the concentrations of all ions in the distilled water ≤3.5 mg L-1, far below the drinking water guideline value provided by the World Health Organization. The materials of the AC-P25/foam photothermal device are readily available and easily fabricated, showing the practical feasibility of this device for clean water generation.

17.
Microbiome ; 8(1): 162, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213511

RESUMEN

The capability of gut microbiota in degrading foods and drugs administered orally can result in diversified efficacies and toxicity interpersonally and cause significant impact on human health. Production of atherogenic trimethylamine N-oxide (TMAO) from carnitine is a gut microbiota-directed pathway and varies widely among individuals. Here, we demonstrated a personalized TMAO formation and carnitine bioavailability from carnitine supplements by differentiating individual TMAO productivities with a recently developed oral carnitine challenge test (OCCT). By exploring gut microbiome in subjects characterized by TMAO producer phenotypes, we identified 39 operational taxonomy units that were highly correlated to TMAO productivity, including Emergencia timonensis, which has been recently discovered to convert γ-butyrobetaine to TMA in vitro. A microbiome-based random forest classifier was therefore constructed to predict the TMAO producer phenotype (AUROC = 0.81) which was then validated with an external cohort (AUROC = 0.80). A novel bacterium called Ihubacter massiliensis was also discovered to be a key microbe for TMA/TMAO production by using an OCCT-based humanized gnotobiotic mice model. Simply combining the presence of E. timonensis and I. massiliensis could account for 43% of high TMAO producers with 97% specificity. Collectively, this human gut microbiota phenotype-directed approach offers potential for developing precision medicine and provides insights into translational research. Video Abstract.


Asunto(s)
Carnitina/farmacología , Metilaminas/metabolismo , Microbiota/efectos de los fármacos , Administración Oral , Adulto , Animales , Carnitina/administración & dosificación , Clostridiales/efectos de los fármacos , Clostridiales/metabolismo , Femenino , Humanos , Masculino , Ratones , Microbiota/genética
18.
Sci Total Environ ; 722: 137860, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197163

RESUMEN

UV filters are essential ingredients in sunscreens and many personal care products. The coexposure of UV filters to solar photolysis and free chlorine (solar/free chlorine) is inevitable in outdoor swimming pools and many other aquatic matrices, and this study aims to investigate the degradation mechanism of one specific UV filter, 4-methylbenzylidene camphor (4MBC), under solar/free chlorine system. Under solar irradiation alone, 4MBC only undergoes isomerization from (E)- to (Z)-4MBC; however, in the solar/free chlorine system, 4MBC was significantly degraded, with a pseudo-first-order rate constant of 0.0137 s-1 (pH = 7). The effects of the initial free chlorine concentration, solution pH and water matrix (presence of dissolved organic matter, HCO3- and Cl-) were studied. The results revealed that reactive chlorine species (RCS) are the dominant species influencing 4MBC degradation via solar/free chlorine, while OH and O3 played minor roles. These species would likely react with the 4-methylstyrene moiety of 4MBC and subsequently lead to 4MBC degradation through hydroxylation, chlorine substitution, oxidation and demethylation. Nevertheless, the dramatic increase in acute toxicity (Microtox®) during solar/free chlorine degradation of 4MBC highlights the need to further explore the transformation byproducts as well as their associated risks to humans and the environment.

19.
J Hazard Mater ; 391: 122247, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32062347

RESUMEN

Perfluorooctanoic acid (PFOA) have been widely studied due to their persistence, bioaccumulation and possible toxic effects. In this work, we investigated a photoelectrochemical (PEC) system consisting of a graphene oxide-titanium dioxide (GOP25) anode coated on fluorine-doped tin oxide (FTO) glass for removal of PFOA in an aquatic environment. The GOP25/FTO anode was fabricated and well characterized. Nearly complete decomposition of 0.5 mg/L PFOA was achieved after 4 h of PEC treatment with an initial pH of 5.3 and a current density of 16.7 mA cm-2. The presence of graphene oxide (GO) on the TiO2 anode could enhance its electrochemical performance, thereby leading to increased decomposition efficiency. A total of 18 PFOA transformation products, including short-chain perfluoroalkyl acids, are reported in this work, and 13 products were observed for the first time. Four possible routes of PFOA decomposition, namely, decarboxylation followed by oxidation, defluorination, hydroxylation and Cl atom substitution, were determined. The presence of chlorinated byproducts in the system indicated that reactive chlorine species contributed to PFOA degradation.

20.
Water Res ; 172: 115495, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954935

RESUMEN

Urban wastewater treatment plants (WWTPs) can be an emission source of aerosol particles to the air and this process has the potential to spread emerging pollutants into the air, where the particles can be widely transported over long distances to areas where this pollution is unexpected. This study demonstrates aeration tanks in WWTPs as a potential source of ketamine, methamphetamine and other emerging contaminant emissions into the air. Ketamine and methamphetamine are frequently detected in high concentrations (maximum of 151.8-162.8 pg/m3) in gaseous and aerosol samples along with 24 other emerging contaminants. Through correlation analysis, the common occurrence of emerging contaminants in air is attributable to their high aqueous concentrations as well as their physicochemical properties. Two simple regression models are developed to provide a practical and convenient way to estimate the steady-state concentrations in air. The gas-phase emission model illustrates the relationship between the solubility, the pKa and the aqueous concentration of compounds in the aeration basin and their gaseous concentrations in air (statistical strength of 74.1%; p value < 0.05), while the partition model establishes the ratio of a compound in the gas and particulate phases in air (statistical strength of 82.6%; p value < 0.05). The results provide a basis for assessing the risk of the inhalation exposure to airborne emerging contaminants; however, in-depth research addressing the impact of aerosols containing persistent pharmaceuticals on human health is still needed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ketamina , Metanfetamina , Monitoreo del Ambiente , Humanos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...