Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 220: 125-138, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657754

RESUMEN

Fusobacterium (F.) nucleatum is a carcinogenesis microbiota in colorectal cancer (CRC). Growing evidence shows that F. nucleatum contributes to chemoresistance. Ferroptosis is reported to restore the susceptibility of resistant cells to chemotherapy. However, the role of gut microbiota affecting ferroptosis in chemoresistance remains unclear. Here, we examined the CRC tissues of patients using 16S rRNA sequencing to investigate the possible connection between gut microbiota dysbiosis and the relapse of CRC. We found that a high abundance of F. nucleatum in CRC tissue is associated with relapse. We further demonstrated that F. nucleatum induced oxaliplatin resistance in vitro and in vivo. The transcriptome of an F. nucleatum-infected cell revealed ferroptosis was associated with F. nucleatum infection. We perform malondialdehyde, ferrous iron, and glutathione assays to verify the effect of F. nucleatum on ferroptosis under oxaliplatin treatment in vivo and in vitro. Mechanistically, F. nucleatum promoted oxaliplatin resistance by overexpressing GPX4 and then inhibiting ferroptosis. E-cadherin/ß-catenin/TCF4 pathway conducted the GPX4 overexpression effect of F. nucleatum. The chromatin immuno-precipitation quantitative PCR (CHIP-qPCR) and dual-luciferase reporter assay showed that F. nucleatum promoted TCF4 binding with GPX4. We also determined the E-cadherin/ß-catenin/TCF4/GPX4 axis related to tumor tissue F. nucleatum status and CRC relapse clinically. Here, we revealed the contribution of F. nucleatum to oxaliplatin resistance by inhibiting ferroptosis in CRC. Targeting F. nucleatum and ferroptosis will provide valuable insight into chemoresistance management and may improve outcomes for patients with CRC.


Asunto(s)
Cadherinas , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Ferroptosis , Fusobacterium nucleatum , Microbioma Gastrointestinal , Oxaliplatino , Fosfolípido Hidroperóxido Glutatión Peroxidasa , beta Catenina , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Cadherinas/metabolismo , Cadherinas/genética , Oxaliplatino/farmacología , beta Catenina/metabolismo , beta Catenina/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Animales , Fusobacterium nucleatum/patogenicidad , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Femenino , Línea Celular Tumoral , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/tratamiento farmacológico , Infecciones por Fusobacterium/metabolismo , Infecciones por Fusobacterium/genética , Infecciones por Fusobacterium/patología , Disbiosis/microbiología , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Ratones Desnudos
2.
Front Endocrinol (Lausanne) ; 13: 895970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093087

RESUMEN

Background and Aims: Oral xerostomia remains one of the most common complications of differentiated thyroid carcinoma patients (DTC) after radioiodine therapy (RAI). Environmental factors in the etiology of xerostomia are largely unknown. We aimed to characterize the oral microbiota signatures and related biological functions associated with xerostomia and identify environmental factors affecting them. Methods: Saliva was collected from 30 DTC patients with xerostomia (XAs), 32 patients without xerostomia (indicated as non-XAs) following RAI after total thyroidectomy, and 40 healthy people (HCs) for 16S rRNA sequencing analysis. Results: The oral microbiota of XAs and non-XAs exhibited significant differences in α and ß diversities and bacterial taxa. The abundance of porphyromonas, fusobacterium, and treponema_2 were significantly higher in XAs, while the abundance of the streptococcus was lower in the microbiota of non-XAs. Fusobacterium, and porphyromonas were negatively correlated with unstimulated/stimulated whole salivary secretion (USW)/(SWS), while fusobacterium, porphyromonas, and treponema_2 genera levels were positively associated with cumulative radioiodine dose. PICRUSt2 and BugBase suggested a significant difference in the expression of potentially_pathogenic, anaerobic, gram_negative, the arachidonic acid metabolism, and lipopolysaccharide (LPS) biosynthesis between XAs and non-XAs, possibly interdependent on radioiodine-induced inflammation. NetShift analysis revealed that porphyromonas genus might play as a key driver during the process of xerostomia. Five genera effectively distinguished XAs from non-XAs (AUC = 0.87). Conclusion: Our study suggests for the first time that DTC patients with xerostomia after RAI display microbiota profiles and associated functional changes that may promote a pro-inflammatory environment. Dysbiosis of the oral microbiota may contribute to exacerbating the severity of xerostomia. Our results provide a research direction of the interaction mechanism between oral microbiota alteration and the progress of xerostomia.


Asunto(s)
Adenocarcinoma , Microbiota , Neoplasias de la Tiroides , Xerostomía , Humanos , Radioisótopos de Yodo/efectos adversos , ARN Ribosómico 16S/genética , Neoplasias de la Tiroides/radioterapia , Xerostomía/etiología
3.
Front Genet ; 13: 925338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937993

RESUMEN

Background: Abnormal mucosal inflammation is a critical risk factor for pathogenesis and progression of colorectal cancer (CRC). As a type of proinflammatory death, pyroptosis can recast a suitable microenvironment to promote tumor growth. However, the potential role of pyroptosis in CRC remains unclear. Methods: A total of 38 pyroptosis-related gene (PRG) expression profiles and clinical information were collected from multiple public datasets. Bioinformatics methods were used to analyze the clinical significance, functional status, immune infiltration, genomic alteration, and drug sensitivity in different subgroups. Whole-genome microarray analysis was performed to analyze the regulation of gut microbiota on the expression of PRGs. Results: Two distinct molecular subtypes were identified and suggested that multilayer PRG alterations were associated with patient clinicopathological features, prognosis, and tumor microenvironment (TME) infiltrating characteristics. Furthermore, we obtained eight PRG signatures by applying differential expression analysis and univariate Cox and Lasso regression analyses. A risk prognosis model was constructed for predicting overall survival (OS) and recurrence-free survival (RFS) based on the PRG signature. There were significant differences in clinical characteristics, 22 immune cells, and immune functions between the high- and low-risk groups. In addition, the PRG signature was significantly associated with the microsatellite instability (MSI), tumor mutation burden (TMB), cancer stem cell (CSC) index, immunotherapeutic characteristics, and chemotherapeutic drug sensitivity. Moreover, the in vitro experiments had shown that Fusobacterium nucleatum (F.n) could affect the CASP6 expression, which was associated with the chemoresistance to 5-fluorouracil (5-Fu) in CRC. Conclusion: Our findings provided a foundation for future research targeting pyroptosis and a new insight into the prognosis and immune cell infiltration of CRC, and they suggested that F.n might influence CRC progression through pyroptosis.

4.
J Gastroenterol Hepatol ; 37(9): 1756-1767, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35849493

RESUMEN

BACKGROUND AND AIMS: Colon anastomotic leak (CAL) is considered one of the most feared and serious postoperative complications in colorectal cancer (CRC) patients, with no effective prevention strategies to date. Based on previous studies, gut microbiota is associated with anastomotic healing, but its ability to effectively promote anastomotic healing remains largely unknown. METHODS: We performed a clinical study to analyze the gut microbiota profiling in CRC patients who developed CAL and those who did not (nCAL) using 16S-rRNA-based next-generation sequencing (NGS). To investigate these changes in an in vivo model, we performed fecal microbiota transplantation in a colon anastomosis rat experimental model to elucidate the causal effect between gut microbiota and anastomotic healing. Notably, RNA-seq in the anastomotic tissue of the latter experimental model was utilized to discover the potential molecular mechanism. RESULTS: Our analysis implicated that gut microbiota profiling was profoundly different between CAL and nCAL patients. Strikingly, the rat experimental model transplanted with fecal microbiota derived from nCAL patients demonstrated enhanced anastomotic healing properties. Moreover, collagen synthesis, EMT, and TGF-ß/Smad signaling pathways were upregulated in the same rats. Concordantly, we discovered that the better anastomotic healing profiling displayed in gut microbiota derived from nCAL patients is dependent on the TGF-ß/Smad-induced EMT in vitro and in vivo. CONCLUSIONS: Collectively, our clinical study identified the postoperative gut microbiota profile is associated with CAL in CRC patients. On the contrary, fecal microbiota from nCAL patients promotes anastomotic healing via TGF-ß/Smad-induced EMT, with subsequent collagen synthesis and enhanced anastomosis healing.


Asunto(s)
Microbioma Gastrointestinal , Anastomosis Quirúrgica/efectos adversos , Fuga Anastomótica/etiología , Animales , Colágeno/metabolismo , Colon/metabolismo , Colon/cirugía , Células Epiteliales/metabolismo , Ratas , Factor de Crecimiento Transformador beta
5.
Front Endocrinol (Lausanne) ; 13: 834674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350100

RESUMEN

Background: Thyroid hormone withdrawal (THW) in postoperative thyroid cancer patients who need always accompanied by complications (e.g., dyslipidemia and constipation). At present, there are no effective and safe means to alleviate these complications. Purpose: We aimed to assess the oral-gut microbiota profiles in THW patients then investigate whether probiotics could alleviating alleviate THW related complications and investigate whether these therapeutic effects were associated with the oral-gut microbiota state. Methods: Fifty eligible thyroid carcinoma patients undergoing thyroidectomy were randomly assigned to receive probiotics or placebo during THW. Complications were assessed through validated questionnaires and plasma lipid indicators. The complex probiotics preparation was composed of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus. Results: Probiotics alleviated lack of energy, constipation, weight gain, and dry mouth and decreased the levels of fecal/serum LPS and plasma lipid indicators (total cholesterol, triglycerides, low-density lipoprotein, and apolipoprotein A) (P < 0.05). Gut and oral microbial diversity were significantly decreased after THW, while an increased microbial dysbiosis index (MDI) was observed. Probiotics distinctly restored the gut and oral microbial diversity. Increased Holdemanella, Enterococcus, and Coprococcus_2, while decreased Fusobacterium, Eubacterium_ruminantium_group, Ruminococcus_1, and Parasutterella in the gut were found after probiotics intervention. Lack of energy, constipation, weight gain, and dyslipidemia were seen to be related to the above microbiota. In addition, probiotics reduced oral Prevotella_9, Haemophilus, Fusobacterium, and Lautropia, which were positively correlated with the occurrence of dry mouth. Conclusion: Probiotics reduce the incidence of complications in patients after THW, which may be related to modifying the oral and gut microbiota. Clinical Trial Registration: [https://clinicaltrials.gov/], identifier America Clinical Trial Registry NCT03574051.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Neoplasias de la Tiroides , Disbiosis/etiología , Disbiosis/terapia , Humanos , Radioisótopos de Yodo , Probióticos/uso terapéutico , Hormonas Tiroideas/farmacología , Neoplasias de la Tiroides/cirugía , Tiroidectomía/efectos adversos
6.
J Gastroenterol Hepatol ; 37(3): 518-530, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34907602

RESUMEN

BACKGROUND AND AIM: Patients undergoing abdominal surgery can develop postoperative ileus (POI). Inflammation of the intestinal muscularis following intestinal manipulation may be caused by displaced bacteria or lipopolysaccharide (LPS). The aim of this study was to investigate the relationship between gut microbiota, LPS, and POI in colorectal cancer (CRC) patients and explore underlying mechanisms of LPS-triggered POI. METHODS: Sixty CRC patients undergoing colorectal resection were included. Bacterial communities from fecal samples were characterized by 16S rRNA gene sequencing, and fecal LPS levels were determined by Limulus amebocyte lysate assay. Mice were used to mechanistically investigate the causal relationship between microbiota, LPS, and POI. RESULTS: We discovered that CRC patients who developed prolonged POI (PPOI) had a unique pro-inflammatory gut microbial composition during the perioperative period. The highest proportions of Gram-negative bacteria at the genus level were Escherichia-Shigella and Bacteroides; the abundance of Escherichia-Shigella was higher throughout the perioperative period. Fecal LPS levels were significantly higher in patients with PPOI. In mice treated with an antibiotic cocktail, intestinal muscularis inflammation and intestinal dysfunction were significantly improved. Inflammation and dysfunction were significantly reduced in mice treated with polymyxin B, but were worsened by treatment with LPS. Moreover, LPS upregulated p38 phosphorylation in mice, and treatment with an inhibitor of p38 (SB203580) significantly alleviated intestinal inflammation and dysmotility. CONCLUSION: Lipopolysaccharide increases intestinal muscularis inflammation via activation of p38 signaling, which aggravates POI. Removing bacterial sources of LPS during the perioperative period is promising for the prophylactic treatment of PPOI.


Asunto(s)
Neoplasias Colorrectales , Ileus , Lipopolisacáridos , Complicaciones Posoperatorias , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Neoplasias Colorrectales/cirugía , Humanos , Ileus/patología , Inflamación , Lipopolisacáridos/metabolismo , Ratones , Complicaciones Posoperatorias/etiología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Front Microbiol ; 13: 1031882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590433

RESUMEN

Background: Despite advances in anastomotic techniques and perioperative care, the incidence of anastomotic leak (AL) has not substantially decreased over time. Although it is known that AL etiology is multifactorial and the mechanisms involved remain unclear, there is accumulating evidence pointing at AL related to gut microbiota. Method: We firstly performed a clinical study to analyze the gut microbiota between colorectal cancer patients who developed AL and those who did not (nAL) using 16S-rRNA sequencing and quantitative real-time PCR to identify AL risk bacterial taxa. Then we built a rat anastomosis model and performed a bacteria transplantation to ensure the cause-effect relationship. The anastomotic healing score was used to evaluate the healing of anastomosis. In addition, we assessed the adhesion ability of bacteria by staining with fluorescein isothiocyanate and attachment assay. The expression of matrix metalloproteinase 9 (MMP9) was detected by western blot, and the activity was detected by gelatin zymography. Results: We found that the abundance and positive rate of Fusobacterium nucleatum (Fn) were higher in the AL patients. Exposure of the rat's colon anastomosis to Fn contributes to the loss of submucosa collagen I and III, leading to AL's pathogenesis. Fn can attach to the gut epithelial cells and stimulate intestinal MMP9 expression in vitro and in vivo. We further confirmed that these effects of Fn depended on the E-cadherin/ß-catenin signaling pathway. Conclusion: This work demonstrates that Fn attaches and then stimulates the expression of epithelial cells MMP9 by the E-cadherin/ß-catenin signaling pathway. These effects contribute to collagen break down in the intestinal tissue, finally leading to AL.

8.
Front Cell Dev Biol ; 9: 710165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490259

RESUMEN

Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.

9.
Am J Cancer Res ; 11(6): 2654-2669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249420

RESUMEN

Colorectal cancer patients with synchronous liver metastases (CRSLM) can be treated by simultaneous surgery, that is the primary tumor and liver metastasis are removed at the same time. However, criteria for simultaneous surgery are underwent continuously modified and expanded. An appropriate selection of adequate candidates for simultaneous surgery is vital to get best benefits. A retrospective study including CRSLM patients underwent simultaneous surgical treatment was conducted. CRSLM patients from SEER database were screened as development set, while CRSLM patients in Harbin (China) were enrolled as validation set. Overall survival (OS) and cancer-specific survival (CSS) were applied as end-point. Variables were screen by LASSO-Cox regression, then Cox regression was applied to construct 1-, 3- and 5-year OS, and CSS nomograms. Nomograms were compared to TMN stage for survival prediction and evaluated by concordance indexes (C-indexes), Time-dependent receiver operating characteristic (ROC) curves, Decision Curve Analysis (DCA). 1347 and 112 CRSLM patients were included in the development set and validation set respectively. Nine factors were found associated with OS and CSS, i.e., Age, Primary Site, Differentiation grade, Histology type, T stage, N stage, Tumor size, Chemotherapy, CEA. Compared to the TNM stage, OS nomogram in development set and validation set got C-indexes values of 0.701 vs 0.641, 0.670 vs 0.557 respectively. Meanwhile, compared to the TNM stage, CSS nomogram in development set and validation set got C-indexes values of 0.704 vs 0.649, 0.677 vs 0.569 respectively. AUC values of the OS and CSS nomograms were higher than the TNM stage, DCA showed the OS and CSS nomograms got more clinical net benefit than the TNM stage, in both the development set and validation set. Our nomograms for predicting survival might be helpful to identify the right CRSLM patients who can get most benefit from simultaneous surgery.

10.
Front Pharmacol ; 11: 598170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390986

RESUMEN

Background: Drugs can alter the gut microbiota structure, and gut microbiota dysbiosis in turn is correlated with drug side effects through the intestinal endotoxemia hypothesis. Whether antithyroid drugs (including methimazole and propylthiouracil) cause gut microbiota dysbiosis and whether the gut microbiota is correlated with antithyroid drugs induced liver injury is unknown. Methods: Initial Graves' disease patients were randomly divided into the methimazole group (n = 20) and the propylthiouracil group (n = 20) and were followed up every 2 weeks; 50 healthy controls were also included. The structure and function of gut microbiota were compared from the cross sectional and longitudinal levels. The correlation between the gut microbiota and clinical parameters was also determined. In addition, Sprague-Dawley rats were randomly allotted into six groups, including four drug groups, which received daily doses of methimazole (1.5 mg/kg/day; 2.5 mg/kg/day) or propylthiouracil (7.5 mg/kg/day; 12.5 mg/kg/day) by oral gavage, and two control groups received the vehicle. In addition to the indexes mentioned above, intestinal barrier-related indexes were also performed. Results: Cross sectional and longitudinal comparison results from both clinical trials and animal studies indicate that antithyroid drugs altered gut microbiota structure; and the liver function related indexes all increased which correlated with gut microbiota. In addition, lipopolysaccharide-related pathways and the lipopolysaccharide concentration in feces and serum all increased after antithyroid drugs administration. These results consistent with the destroyed intestinal barrier in animal study after antithyroid drugs administration. Conclusion: We verified that antithyroid drugs altered gut microbiota structure and that the gut microbiota may in turn be correlated with antithyroid drugs-induced liver injury through the intestinal endotoxemia hypothesis.

11.
Int J Cancer ; 144(11): 2728-2745, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30565661

RESUMEN

The aim of our study was to investigate the relationship among the gut microbiota community, metabolite profiles and thyroid carcinoma (TC). First, 30 TC patients and 35 healthy controls (HCs) fecal samples were applied to characterize the gut microbial community using 16S rRNA gene sequencing. Differential microbiota compositions were observed, with significant enrichment of 19 and depletion of 8 genera in TC samples compared to those in HCs (Q value <0.05), and some genera were correlated with various clinical parameters, such as lipoprotein A and apolipoprotein B. Furthermore, 6 different genera distinguished TC patients from HCs with the AUC of 0.94. The PICRUSt analysis showed 12 remarkably different metabolic pathways (Q value <0.05). Subsequently, we systematically analyzed the gut microbiota and metabolites in the same TC patients (n = 15) and HCs (n = 15). The characteristics of the gut microbiota community were mostly consistent with the above results (30 TC patients and 35 HCs), and liquid chromatography mass spectrometry analysis was performed to characterize the metabolite profiles. In total, 21 different genera (Q value <0.05) and 72 significantly changed metabolites (VIP > 1.0 and p < 0.05) were observed and correlated to each other. Eight metabolites combined with 5 genera were more effective in distinguishing TC patients from HCs (AUC = 0.97). In conclusion, our study presents a comprehensive landscape of the gut microbiota and metabolites in TC patients, and provides a research direction of the mechanism of interaction between gut microbiota alteration and TC pathogenesis.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Cáncer Papilar Tiroideo/microbiología , Neoplasias de la Tiroides/microbiología , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , ADN Bacteriano/aislamiento & purificación , Femenino , Voluntarios Sanos , Humanos , Mucosa Intestinal/microbiología , Masculino , Metabolómica , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...