Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 16(38): 20697-702, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25162360

RESUMEN

Li2MnO3 is an integrated component in lithium-manganese-rich nickel manganese cobalt oxides, and the conversion of Li2MnO3 to a spinel-like structure after electrochemical activation has been associated with the continuous potential decay of the material. Delithiated Li2MnO3 and delithiated LiMn2O4 were used as model materials to investigate the mechanism of forming the spinel-like structure. An in situ high-energy X-ray diffraction technique was used to trace the structural change of materials at elevated temperatures, a procedure to mimic the structural transformation during the normal cycling of batteries. It was also found that the migration of Mn atoms from the octahedral sites to tetrahedral sites is the key step for phase transformation from a monoclinic structure to a spinel structure.

2.
ACS Appl Mater Interfaces ; 6(15): 12692-7, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24977645

RESUMEN

Safety of lithium-ion batteries has been a major barrier to large-scale applications. For better understanding the failure mechanism of battery materials under thermal abuse, the decomposition of a delithiated high energy cathode material, Li1.2-xNi0.15Mn0.55Co0.1O2, in the stainless-steel high pressure capsules was investigated by in situ high energy X-ray diffraction. The data revealed that the thermally induced decomposition of the delithiated transition metal (TM) oxide was strongly influenced by the presence of electrolyte components. When there was no electrolyte, the layered structure for the delithiated TM oxide was changed to a disordered Li1-xM2O4-type spinel, which started at ca. 266 °C. The disordered Li1-xM2O4-type spinel was decomposed to a disordered M3O4-type spinel phase, which started at ca. 327 °C. In the presence of organic solvent, the layered structure was decomposed to a disordered M3O4-type spinel phase, and the onset temperature of the decomposition was ca. 216 °C. When the LiPF6 salt was also present, the onset temperature of the decomposition was changed to ca. 249 °C with the formation of MnF2 phase. The results suggest that a proper optimization of the electrolyte component, that is, the organic solvent and the lithium salt, can alter the decomposition pathway of delithiated cathodes, leading to improved safety of lithium-ion batteries.

4.
Nat Commun ; 4: 1513, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23443541

RESUMEN

Long-life and safe lithium-ion batteries have been long pursued to enable electrification of the transportation system and for grid applications. However, the poor safety characteristics of lithium-ion batteries have been the major bottleneck for the widespread deployment of this promising technology. Here, we report a novel nonaqueous Li(2)B(12)F(12-x)H(x) electrolyte, using lithium difluoro(oxalato)borate as an electrolyte additive, that has superior performance to the conventional LiPF(6)-based electrolyte with regard to cycle life and safety, including tolerance to both overcharge and thermal abuse. Cells tested with the Li(2)B(12)F(9)H(3)-based electrolyte maintained about 70% initial capacity when cycled at 55 °C for 1,200 cycles, and the intrinsic overcharge protection mechanism was active up to 450 overcharge abuse cycles. Results from in situ high-energy X-ray diffraction showed that the thermal decomposition of the delithiated Li(1-x)[Ni(1/3)Mn(1/3)Co(1/3)](0.9)O(2) cathode was delayed by about 20 °C when using the Li(2)B(12)F(12)-based electrolyte.

5.
Inorg Chem ; 51(24): 13281-8, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23186229

RESUMEN

We report a transformative, all inorganic synthesis method of preparing supported bimetallic Pd(3)Ag alloy nanoparticles. The method involves breaking down bulk Pd(3)Ag alloy into the nanoparticles in liquid lithium, converting metallic Li to LiOH, and transferring Pd(3)Ag nanoparticles/LiOH mixture onto non-water-soluble supports, followed by leaching off the LiOH with water under ambient conditions. The size of the resulting Pd(3)Ag nanoparticles was found narrowly distributed around 2.3 nm characterized by transmission electron microscope (TEM). In addition, studies by X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy showed that the resulting Pd(3)Ag nanoparticles inherited similar atomic ratio and alloy structure as the starting material. The synthesized Pd(3)Ag nanoparticles exhibited excellent catalytic activity toward hydrogenation of acrolein to propanal.

6.
Inorg Chem ; 51(16): 9039-44, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22838388

RESUMEN

The tunability of the band gaps in Zn-based metal-organic frameworks (MOFs) has been experimentally demonstrated via two different approaches: changing the cluster size of the secondary building unit (SBU) or alternating the conjugation of the organic linker.

7.
Funct Plant Biol ; 35(4): 265-280, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688782

RESUMEN

The Ku70/Ku80 heterodimer plays a crucial role in non-homologous end-joining during DNA repair, and is also involved in multiple cellular processes such as telomere maintenance, transcription, and apoptosis. In this study, we investigate the regulation of AtKu genes in higher plants. Promoters of the AtKu70 and AtKu80 were isolated from Arabidopsis and their activities characterised using GUS reporter constructs. AtKu promoter activities were relatively higher in hypocotyls and cotyledons upon germination and in stigma and siliques as well at their early developing stages. Furthermore, AtKu promoter activities could be enhanced by gibberellic acid, auxins, and jasmonic acid, but repressed by abscisic acid, salicylic acid, heat, drought and cold, respectively. Deletion analysis demonstrates minimal lengths of ~400 bp and 600 bp upstream of transcription start site for functional promoters of AtKu70 and AtKu80, respectively. Taken together, expressions of Ku genes are regulated both by developmental programs as well as by plant hormones and environmental stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...