Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 39(5): 2961-2969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308464

RESUMEN

Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.


Asunto(s)
Chalconas , Neoplasias Endometriales , Chaperón BiP del Retículo Endoplásmico , Femenino , Humanos , Transducción de Señal , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Regulación hacia Arriba , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/metabolismo
2.
Cancer Lett ; 583: 216584, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123014

RESUMEN

Magnolin (MGL), a compound derived from the magnolia plant, has inhibitory effects on tumor cell invasion and growth. His study aims to explore the antitumor effect and underlying molecular mechanism of MGL against human cervical cancer. We found that MGL inhibited the proliferation, migration, and invasiveness of cervical cancer cells in vitro and in vivo. The underlying mechanism was shown to involve MGL-induced inhibition of JNK/Sp1-mediated MMP15 transcription and translation. Overexpression of JNK/Sp1 resulted in significant restoration of MMP15 expression and the migration and invasion capabilities of MGL-treated cervical cancer cells. MGL modulated the cervical cancer microenvironment by inhibiting cell metastasis via targeting IL-10/IL-10 receptor B (IL-10RB) expression, thereby attenuating JNK/Sp1-mediated MMP15 expression. Analysis of the gut microbiota of mice fed MGL revealed a significant augmentation in Lachnospiraceae bacteria, known for their production of sodium butyrate. In vivo experiments also demonstrated synergistic inhibition of cervical cancer cell metastasis by MGL and sodium butyrate co-administration. Our study provides pioneering evidence of a novel mechanism by which MGL inhibits tumor growth and metastasis through the IL-10/IL-10RB targeting of the JNK/Sp1/MMP15 axis in human cervical cancer cells.


Asunto(s)
Lignanos , Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Metaloproteinasa 15 de la Matriz , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Ácido Butírico/farmacología , Interleucina-10 , Microambiente Tumoral , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Factor de Transcripción Sp1/metabolismo
3.
Free Radic Biol Med ; 208: 833-845, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776916

RESUMEN

The incidence rate of colorectal cancer (CRC) has been increasing and poses severe threats to human health worldwide and developing effective treatment strategies remains an urgent task. In this study, Chaetoglobosin A (ChA), an endophytic fungal metabolite from the medicinal herb-derived fungus Chaetomium globosum Km1126, was identified as a potent and selective antitumor agent in human CRC. ChA induced growth inhibition of CRC cells in a concentration-dependent manner but did not impair the viability of normal colon cells. ChA triggered mitochondrial intrinsic and caspase-dependent apoptotic cell death. In addition, apoptosis antibody array analysis revealed that expression of Heme oxygenase-1 (HO-1) was significantly increased by ChA. Inhibition of HO-1 increased the sensitivity of CRC cells to ChA, suggesting HO-1 may play a protective role in ChA-mediated cell death. ChA induced cell apoptosis via the induction of reactive oxygen species (ROS) and ROS scavenger (NAC) prevented ChA-induced cell death, mitochondrial dysfunction, and HO-1 activation. ChA promoted the activation of c-Jun N-terminal kinase (JNK), and co-administration of JNK inhibitor or siRNA markedly reversed ChA-mediated apoptosis. ChA significantly decreased the tumor growth without eliciting any organ toxicity or affecting the body weight of the CRC xenograft mice. This is the first study to demonstrate that ChA exhibits promising anti-cancer properties against human CRC both in vitro and in vivo. ChA is a potential therapeutic agent worthy of further development in clinical trials for cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Hemo-Oxigenasa 1 , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Apoptosis , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral
4.
Eur J Pharmacol ; 951: 175770, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209940

RESUMEN

Prostate cancer metastasis is associated with poor prognosis and is difficult to treat clinically. Numerous studies have shown that Asiatic Acid (AA) has antibacterial, anti-inflammatory, and antioxidant effects. However, the effect of AA on prostate cancer metastasis is still unclear. This purpose of this study is to investigate the effect of AA on prostate cancer metastasis and to better understand its molecular mechanisms of action. Our results indicate that AA ≤ 30 µM did not influence cell viability and cell cycle distribution in PC3, 22Rv1 and DU145 cells. AA inhibited the migratory and invasive capabilities of three prostate cancer cells to be due to its effects on Snail, but did not have activity on Slug. We observed that AA inhibited the Myeloid zinc finger 1 (MZF-1) and ETS Like-1 (Elk-1) protein interaction and affected the complex's binding capacity to the Snail promoter region, ultimately blocking Snail transcription activity. Kinase cascade analysis revealed that phosphorylation of MEK3/6 and p38MAPK was inhibited by AA treatment. Moreover, knockdown of p38MAPK enhanced AA-suppressed protein levels of MZF-1, Elk-1, and Snail, suggesting that p38MAPK influences prostate cancer cell metastasis. These results provide promise for AA as a future candidate in the development of drug therapies to prevent or treat prostate cancer metastasis.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Factores de Transcripción de la Familia Snail , Movimiento Celular
5.
Environ Toxicol ; 38(7): 1641-1650, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37013980

RESUMEN

Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.


Asunto(s)
Proteína HMGB1 , Neoplasias del Cuello Uterino , Femenino , Humanos , Endorribonucleasas/farmacología , Proteína HMGB1/metabolismo , Muerte Celular Inmunogénica , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico
6.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679651

RESUMEN

Deep learning technology has developed rapidly in recent years and has been successfully applied in many fields, including face recognition. Face recognition is used in many scenarios nowadays, including security control systems, access control management, health and safety management, employee attendance monitoring, automatic border control, and face scan payment. However, deep learning models are vulnerable to adversarial attacks conducted by perturbing probe images to generate adversarial examples, or using adversarial patches to generate well-designed perturbations in specific regions of the image. Most previous studies on adversarial attacks assume that the attacker hacks into the system and knows the architecture and parameters behind the deep learning model. In other words, the attacked model is a white box. However, this scenario is unrepresentative of most real-world adversarial attacks. Consequently, the present study assumes the face recognition system to be a black box, over which the attacker has no control. A Generative Adversarial Network method is proposed for generating adversarial patches to carry out dodging and impersonation attacks on the targeted face recognition system. The experimental results show that the proposed method yields a higher attack success rate than previous works.


Asunto(s)
Aprendizaje Profundo , Reconocimiento Facial , Redes Neurales de la Computación
7.
Protein Sci ; 31(5): e4312, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481630

RESUMEN

Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA-DNA, DNA-RNA, and RNA-RNA duplexes with a long 3' overhang (≥10 nucleotides). The C-terminal tail (CTT)-truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo-form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase-Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell-shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Estabilidad del ARN , ARN , Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Endorribonucleasas , Humanos , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , ARN/química , ARN Helicasas , ARN Mitocondrial , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Phytomedicine ; 100: 154036, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35316724

RESUMEN

BACKGROUND: Asiatic acid (AA) is a naturally pentacyclic triterpenoids extracted from traditional medicine Centella asiatica l. that has demonstrated possesses potential health benefits and antitumor ability. However, the precise anticancer effects and mechanisms by which AA impact RCC cells remains unclear. METHODS: Cell proliferation and cell cycle distribution were detected by MTT, colony formation assay and PI stain by flow cytometry, respectively. Cell mobility and invasiveness were determined by in vitro migration and invasion assay. The secretory MMP15 was detected by ELISA assay. Quantitative RT-PCR, siRNA, and immunoblot were used to determine gene expression/regulation and protein expression, respectively. Antimetastatic effect of AA were performed to lung nodule numbers in vivo metastasis mice model. MMP15, pERK1/2 and p-p38MAPK expressions were determined by immunohistochemistry. RESULTS: Our findings indicated cell proliferation and cell cycle distribution of RCC cells were not significantly influenced by AA treatment. AA suppressed cell migration, invasion and significantly down-regulated mRNA and protein expression of MMP-15 (Matrix Metallopeptidase-15). Activation of ERK1/2 and p38MAPK were inhibited with AA, whereas combined AA with siRNA-ERK or siRNA-p38MAPK markedly reduced the metastatic effect and decreased MMP-15 expression in 786-O and A498 cells. Finally, AA significantly reduced the lung metastasis formation and metastasis-related proteins of human 786-O cells in vivo metastasis mice model. CONCLUSION: AA inhibits the metastatic properties of RCC cells via inhibition of the p-ERK/p-p38MAPK axis and the subsequent down-regulation of MMP-15 in vitro and in vivo. Further study of AA as a potential anti-metastatic agent for RCC is warranted.


Asunto(s)
Carcinoma de Células Renales , Centella , Neoplasias Renales , Triterpenos , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Centella/química , Femenino , Humanos , Neoplasias Renales/metabolismo , Masculino , Metaloproteinasa 15 de la Matriz , Ratones , Triterpenos Pentacíclicos , ARN Interferente Pequeño/farmacología , Triterpenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
9.
Life Sci ; 296: 120317, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026214

RESUMEN

AIMS: Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS: Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS: Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE: These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.


Asunto(s)
Inhibidores de la Angiogénesis , Antineoplásicos Fitogénicos , Neoplasias del Cuello Uterino , Femenino , Humanos , Angelica/química , Inhibidores de la Angiogénesis/farmacología , Antagomirs/genética , Antagomirs/farmacología , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Cell Death Dis ; 12(5): 451, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958583

RESUMEN

Metastasis-associated protein 2 (MTA2) is a transcription factor that is highly associated with matrix metalloproteinase 12 (MMP12). Thus, we hypothesized that MTA2 may regulate MMP12 expression and is involved in cervical cancer metastasis. Results showed that MTA2 and MMP12 were highly expressed in cervical cancer cells, and MTA2 knockdown reduced MMP12 expression and inhibited the metastasis of cervical cancer cells in xenograft mice. MMP12 knockdown did not influence the viability of cervical cancer cells but clearly inhibited cell migration and invasion both in vitro and in vivo. MMP12 was highly expressed in cervical tumor tissues and correlated with the poor survival rate of patients with cervical cancer. Further investigations revealed that p38 mitogen-activated protein kinase (p38), mitogen-activated protein kinase kinase 3 (MEK3), and apoptosis signal-regulating kinase 1 (ASK1) were involved in MMP12 downregulation in response to MTA2 knockdown. Results also demonstrated that p38-mediated Y-box binding protein1 (YB1) phosphorylation disrupted the binding of AP1 (c-Fos/c-Jun) to the MMP12 promoter, thereby inhibiting MMP12 expression and the metastatic potential of cervical cancer cells. Collectively, targeting both MTA2 and MMP12 may be a promising strategy for the treatment of cervical cancer.


Asunto(s)
Histona Desacetilasas/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 12 de la Matriz/biosíntesis , Proteínas Represoras/metabolismo , Factor de Transcripción AP-1/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Femenino , Células HeLa , Xenoinjertos , Histona Desacetilasas/genética , Humanos , MAP Quinasa Quinasa 3/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oncogenes , Proteínas Represoras/genética , Transfección , Neoplasias del Cuello Uterino/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Environ Toxicol ; 36(4): 540-549, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33226171

RESUMEN

Praeruptorin A (PA) is one of the active ingredients found in the dried root of Peucedanum praeruptorum Dunn, has been reported to possess anticancer effects against various types of cancer. However, the effect of PA on human hepatocellular carcinoma (HCC) remains uncleared. In this study, our results indicated that PA did not induce cytotoxicity or alter cell cycle distribution in human HCC cells (Huh-7, SK-Hep-1, and PLC/PRF/5 cells). Instead, PA inhibited the migration and invasion of human HCC cells while downregulating the expression of matrix metalloproteinase-1 (MMP1) and activating the extracellular signal-regulated kinase (ERK) signaling pathways. Furthermore, blocking the ERK signaling pathway through siERK restored the expression of MMP1 and the invasive ability of PA-treated HCC cells. In conclusion, our results demonstrate the antimetastatic activity of PA against human HCC cells, supporting its potential as a therapeutic agent of HCC treatments.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Movimiento Celular/efectos de los fármacos , Cumarinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica , Ensayo de Tumor de Célula Madre
12.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887509

RESUMEN

Cervical cancer is the second most frequent type of gynecologic cancer worldwide. Prokineticin 2 (PROK2) is reported to be involved in tumor progression in some malignant tumors. However, the role of PROK2 in the development of cervical cancer remains unknown. Our results indicate that PROK2 is overexpressed in the human cervical cancer. Cervical cancer patients with high PROK2 expression have a shorter overall survival rate (OS) and disease-free survival rate (DFS). PROK2 acts as a potential biomarker for predicting OS and DFS of cervical cancer patients. We further show that PROK2 is important factor for oncogenic migration and invasion in human cervical cancer cells. Knockdown PROK2 significantly inhibited cell migration, invasion, and MMP15 protein expression in HeLa cells. High expression of MMP15 is confirmed in the human cervical cancer, is significantly associated with the shorter overall survival rate (OS) and is correlated with PROK2 expression. Overexpression of PROK2 using PROK2 plasmid significantly reverses the function of knockdown PROK2, and further upregulates MMP15 expression, migration and invasion of human cervical cancer cells. In conclusion, our findings are the first to demonstrate the role of PROK2 as a novel and potential biomarker for clinical use, and reveal the oncogenic functions of PROK2 as therapeutic target for cervical cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Hormonas Gastrointestinales/metabolismo , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 15 de la Matriz/metabolismo , Neuropéptidos/metabolismo , Neoplasias del Cuello Uterino/patología , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Hormonas Gastrointestinales/antagonistas & inhibidores , Hormonas Gastrointestinales/genética , Humanos , Metaloproteinasa 15 de la Matriz/química , Metaloproteinasa 15 de la Matriz/genética , Invasividad Neoplásica , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Pronóstico , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
13.
Elife ; 92020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501215

RESUMEN

Histone acetylation regulates chromatin structure and gene expression and is removed by histone deacetylases (HDACs). HDACs are commonly found in various protein complexes to confer distinct cellular functions, but how the multi-subunit complexes influence deacetylase activities and site-selectivities in chromatin is poorly understood. Previously we reported the results of studies on the HDAC1 containing CoREST complex and acetylated nucleosome substrates which revealed a notable preference for deacetylation of histone H3 acetyl-Lys9 vs. acetyl-Lys14 (Wu et al, 2018). Here we analyze the enzymatic properties of five class I HDAC complexes: CoREST, NuRD, Sin3B, MiDAC and SMRT with site-specific acetylated nucleosome substrates. Our results demonstrate that these HDAC complexes show a wide variety of deacetylase rates in a site-selective manner. A Gly13 in the histone H3 tail is responsible for a sharp reduction in deacetylase activity of the CoREST complex for H3K14ac. These studies provide a framework for connecting enzymatic and biological functions of specific HDAC complexes.


Asunto(s)
Histona Desacetilasas/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Acetilación , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Histona Desacetilasas/genética , Histonas/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/genética
14.
Mol Ther Nucleic Acids ; 20: 699-710, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32402941

RESUMEN

MTA2 is involved in tumor proliferation and metastasis. However, the role of MTA2 in cervical cancer thus far has not been identified. In this study, we report that elevated expression of MTA2 negatively correlates with Kallikrein-10 (KLK10) expression and poor prognosis of cervical cancer patients. Knockdown of MTA2 substantially inhibited tumor cell migration and invasion, and it enhanced KLK10 expression of the cervical cancer cells in vitro and in vivo. Functionally, shMTA2-mediated suppression of cell mobility was significantly restored by knockdown of KLK10. We also found that Sp1 (transcription factor specificity protein 1) is critical for shMTA2-induced transcriptional upregulation of KLK10 and subsequent biological functions. Furthermore, we found that the expression of miR-7 is elevated by MTA2 silencing and then by direct inhibition of Sp1 expression. Knockdown of Sp1 additively enhanced KLK10 expression in MTA2-knocked down cervical cancer cells, suggesting that the miR-7/Sp1 axis acts as an effector of MTA2 to impact KLK10 levels and mobility of cervical cancer cells. Taken together, our findings provide new insights into the physiological relationship between MTA2 and KLK10 via regulating the miR-7/Sp1 axis, and they provide a potential therapeutic target in cervical cancer.

15.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331211

RESUMEN

Renal cell carcinoma (RCC) is the most common adult kidney cancer, and accounts for 85% of all cases of kidney cancers worldwide. Praeruptorin B (Pra-B) is a bioactive constituent of Peucedanum praeruptorum Dunn and exhibits several pharmacological activities, including potent antitumor effects. However, the anti-RCC effects of Pra-B and their underlying mechanisms are unclear; therefore, we explored the effects of Pra-B on RCC cells in this study. We found that Pra-B nonsignificantly influenced the cell viability of human RCC cell lines 786-O and ACHN at a dose of less than 30 µM for 24 h treatment. Further study revealed that Pra-B potently inhibited the migration and invasion of 786-O and ACHN cells, as well as downregulated the mRNA and protein expression of cathepsin C (CTSC) and cathepsin V (CTSV) of 786-O and ACHN cells. Mechanistically, Pra-B also reduced the protein levels of phospho (p)-epidermal growth factor receptor (EGFR), p-mitogen-activated protein kinase kinase (MEK), and p-extracellular signal-regulated kinases (ERK) in RCC cells. In addition, Pra-B treatment inhibited the effect of EGF on the upregulation of EGFR-MEK-ERK, CTSC and CTSV expression, cellular migration, and invasion of 786-O cells. Our findings are the first to demonstrate that Pra-B can reduce the migration and invasion ability of human RCC cells through suppressing the EGFR-MEK-ERK signaling pathway and subsequently downregulating CTSC and CTSV. This evidence suggests that Pra-B can be developed as an effective antimetastatic agent for the treatment of RCC.


Asunto(s)
Carcinoma de Células Renales/genética , Catepsina C/genética , Catepsinas/genética , Cumarinas/farmacología , Cisteína Endopeptidasas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Catepsina C/metabolismo , Catepsinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Cisteína Endopeptidasas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Estructura Molecular
16.
J Cell Physiol ; 235(11): 8446-8460, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324277

RESUMEN

ß-Mangostin is a natural mangostin with potent anticancer activity against various cancers. In this study, we further explored the anticancer activity of ß-mangostin on cervical cancer cells. ß-Mangostin did not affect cell viability and cell cycle distribution in HeLa and SiHa cells; however, it dose-dependently inhibited the migration and invasion of both the human cervical cancer cell lines. In addition, we observed that ß-mangostin suppressed the expression of integrin αV and ß3 and the downstream focal adhesion kinase/Src signaling. We also found that Snail was involved in the ß-mangostin inhibited cell migration and invasion of HeLa cell. Then, our findings showed that ß-mangostin reduced both nuclear translocation and messenger RNA expression of AP-1 and demonstrated that AP-1 could target to the Snail promoter and induce Snail expression. Kinase cascade analysis and reporter assay showed that JNK2 was involved in the inhibition of AP-1/Snail axis by ß-mangostin in HeLa cells. These results indicate that ß-mangostin can inhibit the mobility and invasiveness of cervical cancer cells, which may attribute to the suppression of both integrin/Src signaling and JNK2-mediated AP-1/Snail axis. This suggests that ß-mangostin has potential antimetastatic potential against cervical cancer cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Transcripción AP-1/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Xantonas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Células HeLa , Humanos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Neoplasias del Cuello Uterino/genética
17.
J Cell Physiol ; 235(7-8): 5590-5601, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31960449

RESUMEN

Cancer stem cells (CSCs) exhibit specific characteristics including decontrolled self-renewal, tumor-initiating, promoting, and metastatic potential, abnormal stemness signaling, and chemotherapy resistance. Thus, targeting CSC is becoming an emerging cancer treatment. α-Mangostin has been shown to have potent and multiple anticancer activities. Accordingly, we hypothesized that α-mangostin may diminish the stemness and proliferation of CSC-like cervical cancer cells. In our results, comparing to the parent cells, CSC-like SiHa and HeLa cells highly expressed CSC marker Sox2, Oct4, Nanog, CK-17, and CD49f. α-Mangostin significantly reduced the cell viability, sphere-forming ability, and expression of the CSC stemness makers of CSC-like cervical cancer cells. Further investigation showed that α-mangostin induced mitochondrial depolarization and mitochondrial apoptosis signaling, including upregulation of Bax, downregulation of Mcl-1 and Bcl-2, and activation of caspase-9/3. Moreover, α-mangostin synergically enhanced the cytotoxicity of cisplatin on CSC-like SiHa cells by promoting mitochondrial apoptosis and inhibiting the expression of CSC markers. Consistent with in vitro findings, in vivo tumor growth assay revealed that α-mangostin administration significantly inhibited the growth of inoculated CSC-like SiHa cells and synergically enhanced the antitumor effect of cisplatin. Our findings indicate that α-mangostin can reduce the stemness and proliferation of CSC-like SiHa and HeLa cells and promote the cytotoxicity of cisplatin, which may attribute to the mitochondrial apoptosis activation. Thus, it suggests that α-mangostin may have clinical potential to improve chemotherapy for cervical cancer by targeting cervical CSC.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Xantonas/farmacología , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Femenino , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
18.
J Pineal Res ; 68(1): e12615, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31605630

RESUMEN

Abnormal proliferation and motility of retinal pigment epithelial cells leads to proliferative vitreoretinopathy (PVR). Melatonin is a known effective antitumour and anti-invasive agent, but whether it affects the formation and underlying mechanisms of PVR remains unclear. In this study, the results of the MTT assay, colony formation and propidium iodide (PI) staining with flow cytometry revealed that melatonin dose dependently inhibited epidermal growth factor (EGF)-induced proliferation of human ARPE-19 cells. Furthermore, melatonin reduced EGF-induced motility by suppressing cathepsin S (CTSS) expression. Pretreatment with ZFL (a CTSS inhibitor) or overexpression of CTSS (pCMV-CTSS) significantly inhibited EGF-induced cell motility when combined with melatonin. Epidermal growth factor induced the phosphorylation of AKT(S473)/mTOR (S2448) and transcription factor (c-Jun/Sp1) signaling pathways. Pretreatment of LY294002 (a PI3K inhibitor) or rapamycin (an mTOR inhibitor) markedly reduced EGF-induced motility and p-AKT/p-mTOR/c-Jun/Sp1 expression when combined with melatonin. Taken together, these data indicate that melatonin inhibited EGF-induced proliferation and motility of human ARPE-19 cells by activating the AKT/mTOR pathway, which is dependent on CTSS modulation of c-Jun/Sp1 signalling. Melatonin may be a promising therapeutic drug against PVR.


Asunto(s)
Catepsinas/metabolismo , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Melatonina/farmacología , Sustancias Protectoras/farmacología , Vitreorretinopatía Proliferativa/metabolismo , Catepsinas/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/genética , Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Epitelio Pigmentado de la Retina/citología , Transducción de Señal/efectos de los fármacos
19.
J Cancer ; 10(26): 6716-6725, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31777601

RESUMEN

Studies have shown the overexpression of metastasis-associated protein 2 (MTA2) to be associated with hepatocellular carcinoma (HCC) progression. However, the molecular mechanism of MTA2 expression in HCC is unclear. In our study, we found a higher level of MTA2 in HCC tissues than in normal tissues and a significant correlation between tumor grade and overall survival of HCC patients. We also found that MTA2 inhibition reduced the migration and invasion capabilities of HCC cells, independent of cell proliferation. Mechanistic studies have suggested that MTA2 protein and mRNA are more highly expressed in SK-Hep-1 and Huh-7 cells compared with other HCC cells. MTA2 silencing drastically reduced migration and invasion capability and also inhibited matrix metalloproteinase 2 (MMP2) at the transcriptional and translation levels in both cells. In addition, treatment with the MMP2 antibody markedly impaired MTA2-knockdown-mediated inhibition of migration and invasion in SK-Hep-1 cells. Furthermore, MTA2 knockdown reduced the phosphorylation of the p38MAPK protein, whereas the inhibition of p38MAPK (SB203580 or si-p38) confirmed that blocking the p38MAPK pathway mediated MTA2-knockdown-inhibited migration and invasion in SK-Hep-1 cells. We demonstrated the molecular mechanism by which MTA2 inhibits human HCC cell metastasis through the p38MAPK/MMP2 pathways, which might be helpful in determining the diagnostic value of this protein in patients with HCC.

20.
Cancers (Basel) ; 11(12)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771219

RESUMEN

Metastasis-associated protein 2 (MTA2) was previously known as a requirement to maintain malignant potentials in several human cancers. However, the role of MTA2 in the progression of renal cell carcinoma (RCC) has not yet been delineated. In this study, MTA2 expression was significantly increased in RCC tissues and cell lines. Increased MTA2 expression was significantly associated with tumour grade (p = 0.002) and was an independent prognostic factor for overall survival with a high RCC tumour grade. MTA2 knockdown inhibited the migration, invasion, and in vivo metastasis of RCC cells without effects on cell proliferation. Regarding molecular mechanisms, MTA2 knockdown reduced the activity, protein level, and mRNA expression of matrix metalloproteinase-9 (MMP-9) in RCC cells. Further analyses demonstrated that patients with lower miR-133b expression had poorer survival rates than those with higher expression from The Cancer Genome Atlas database. Moreover, miR-133b modulated the 3'untranslated region (UTR) of MMP-9 promoter activities and subsequently the migratory and invasive abilities of these dysregulated expressions of MTA2 in RCC cells. The inhibition of MTA2 could contribute to human RCC metastasis by regulating the expression of miR-133b targeting MMP-9 expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...