Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1012319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885290

RESUMEN

Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.


Asunto(s)
Biopelículas , Candida albicans , Candidiasis , Infecciones Relacionadas con Catéteres , Trampas Extracelulares , Proteínas Fúngicas , Neutrófilos , Humanos , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Candidiasis/microbiología , Candidiasis/inmunología , Infecciones Relacionadas con Catéteres/microbiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Trampas Extracelulares/inmunología , Catéteres/microbiología , Regulación Fúngica de la Expresión Génica
2.
Nanoscale ; 15(48): 19735-19745, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38047470

RESUMEN

Two interesting electronic transport properties including in-plane anisotropy and nonhomogeneous carrier distribution were observed in ReS2 nanoflakes. The electrical conductivity defined by the current parallel to the b-axis (‖b) is 32 times higher than that perpendicular to the b-axis (⊥b). Similar anisotropy was also observed in optoelectronic properties in which the ratio of responsivity ‖b to ⊥b reaches 20. In addition, conductivity and thermal activation energy with substantial thickness dependence were observed, which indicates a surface-dominant 2D transport in ReS2 nanoflakes. The presence of surface electron accumulation (SEA) in ReS2 has been confirmed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. The electron concentration (∼1019 cm-3) at the surface is over three orders of magnitude higher than that of the bulks. Sulfur vacancies which are sensitive to air molecules are suggested to be the major factor resulting in SEA and high conductivity in ReS2 nanostructures.

3.
Virulence ; 14(1): 2175914, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36745535

RESUMEN

The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Candida tropicalis , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Candida tropicalis/genética , Glucosa/metabolismo , Mamíferos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-36673712

RESUMEN

Unaccounted-for migrant workers (UMWs), who have left their employment placement and whose whereabouts are unknown, make up a vulnerable population in Taiwan. The children of UMWs have a particularly precarious status because they are undocumented/stateless, immigrant, and young. Living with this precarious status limits their children's rights to survival and development. Moreover, services for female UMWs and their undocumented children are underdeveloped. This study explores the accessibility and availability of social services for UMWs and undocumented children, based on interviews with 12 stakeholders from multiple systems, including a local government, a child welfare placement center, a migrant worker detention center, a hospital, a regional religious center, and a foreign country office. Preliminary findings indicate the following: First, UMWs' rights to healthcare are not preserved, and they experience greater prenatal risks because their illegal status excludes them from universal health coverage. Second, undocumented children's rights to survival and development are concerning because these children can be placed in residential care without individualized care or environmental stimulation. Third, children's rights to cultural identity and permanency are uncertain in that repatriation or adoption does not guarantee their future best interests.


Asunto(s)
Migrantes , Inmigrantes Indocumentados , Embarazo , Humanos , Niño , Femenino , Taiwán , Accesibilidad a los Servicios de Salud , Servicio Social
5.
ACS Omega ; 7(30): 26396-26406, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936464

RESUMEN

In an integrated circuit, signal propagation loss is proportional to the frequency, dissipation factor (D f), and square root of dielectric constant (D k). The loss becomes obvious as we move to high-frequency communication. Therefore, a polymer having low D k and D f is critical for copper-clad laminates at higher frequencies. For this purpose, a 4-vinylbenzyl ether phenoxy-2,3,5,6-tetrafluorophenylene-terminated OPE (VT-OPE) resin was synthesized and its properties were compared with the thermoset of commercial OPE-2St resin. The thermoset of VT-OPE shows a higher T g (242 vs 229 °C), a relatively high cross-linking density (1.59 vs 1.41 mmole cm-3), a lower coefficient of thermal expansion (55 vs 76 ppm/°C), better dielectric characteristic at 10 GHz (D k values of 2.58 vs 2.75, D f values of 0.005 vs 0.006), lower water absorption (0.135 vs 0.312 wt %), and better flame retardancy (UL-94 VTM-0 vs VTM-1 with dropping seriously) than the thermoset of OPE-2St. To verify the practicability of VT-OPE for copper-clad laminate, a laboratory process was also performed to prepare a copper-clad laminate, which shows a high peeling strength with copper foil (5.5 lb/in), high thermal reliability with a solder dipping test at 288 °C (>600 s), and the time for delamination of the laminate in thermal mechanical analysis (TMA) at 288 °C is over 60 min.

6.
ACS Appl Mater Interfaces ; 14(22): 25466-25477, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604330

RESUMEN

Covalent organic frameworks (COFs) are of great interest in the energy and optoelectronic fields due to their high porosity, superior thermal stability, and highly ordered conjugated architecture, which are beneficial for charge migration, charge separation, and light harvesting. In this study, polyimide COFs (PI-COFs) are synthesized through the condensation reaction of pyromellitic dianhydride (PMDA) with tris(4-aminophenyl) amine (TAPA) and then doped in the TiO2 photoelectrode of a dye-sensitized solar cell (DSSC) to co-work with N719 dye to explore their functionality. As a benchmark, the pristine DSSC without the doping of PI-COFs exhibits a power conversion efficiency of 9.05% under simulated one sun illumination. The doping of 0.04 wt % PI-COFs contributes an enhanced short-circuit current density (JSC) from 17.43 to 19.03 mA/cm2, and therefore, the cell efficiency is enhanced to 9.93%. The enhancement of JSC is attributed to the bifunctionality of PI-COFs, which enhances the charge transfer/injection and suppresses the charge recombination through the host (PI-COF)-guest (N719 dye) interaction. In addition, the PI-COFs also function as a cosensitizer and contribute a small quantity of photoinduced electrons upon sunlight illumination. Surface modification of oxygen plasma improves the hydrophilicity of PI-COF particles and reinforces the heterogeneous linkage between PI-COF and TiO2 nanoparticles, giving rise to more efficient charge injection. As a result, the champion cell exhibits a high power conversion efficiency of 10.46% with an enhanced JSC of 19.43 mA/cm2. This methodology of increasing solar efficiency by modification of the photoelectrode with the doping of PI-COFs in the TiO2 nanoparticles is promising in the development of DSSCs.

7.
ACS Appl Mater Interfaces ; 13(27): 31898-31909, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34190528

RESUMEN

Regioregular polythiophenes have been widely used in organic electronic applications due to their solution processability with chemical modification through side chain engineering, as well as their microstructural organization and good hole transport properties. Here, we introduce alkylthio side chains, (poly[(3-alkylthio)thiophene]s; P3ATTs), with strong noncovalent sulfur molecular interactions, to main chain thienyl backbones. These P3ATTs were compared with alkyl-substituted polythiophene (poly(3-alkylthiophene); P3AT) variants such that the effects of straight (hexyl and decyl) and branched (2-ethylhexyl) side chains (with and without S atoms) on their thin-film morphologies and crystalline states could be investigated. P3ATTs with linear alkylthio side chains (P3HTT, hexylthio; P3DTT, decylthio) did not attain the expected higher organic field-effect transistor (OFET) mobilities with respect to P3HT (hexyl) and P3DT (decyl) mainly due to their lower regioregularity (76-78%), although P3ATTs exhibit an enhanced tendency for aggregation and compact molecular packing, as indicated by the red-shifting of the absorption spectra and the shortening of the π-π stacking distance, respectively. Moreover, the loss of regioregularity issue can be solved by introducing more soluble 2-ethylhexylthio branched side chains to form poly[3-(2-ethylhexylthio)thiophene] (P3EHTT), which provides enhanced crystallinity and efficient charge mobility (increased by up to a factor of 3) with respect to the poly(2-ethylhexylthiophene) (P3EHT) without S atoms in the side moieties. This study demonstrates that the presence of side chain alkylthio structural motifs with nonbonded interactions in polythiophene semiconductors has a beneficial impact on the molecular conformation, morphologies, structural packing, and charge transport in OFET devices.

8.
Polymers (Basel) ; 13(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804268

RESUMEN

Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.

9.
Virulence ; 12(1): 281-297, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33427576

RESUMEN

Candida albicans is the most prevalent fungal pathogen in humans, particularly in immunocompromised patients. In this study, by screening a C. albicans mutant library, we first identified that the MSS2 gene, an ortholog of Saccharomyces cerevisiae MSS2 required for mitochondrial respiration, mediates chitosan resistance. Upon treatment with 0.2% chitosan, the growth of mss2Δ strains was strikingly impaired, and MSS2 expression was significantly repressed by chitosan. Furthermore, mss2Δ strains exhibited slow growth on medium supplemented with glycerol as the sole carbon source. Similar to the chitosan-treated wild-type strain, the mss2Δ strain exhibited a significantly impaired ATP production ability. These data suggest that an antifungal mechanism of chitosan against C. albicans acts by inhibiting MSS2 gene expression, leading to repression of mitochondrial function. Normal respiratory function is suggested to be required for fungal virulence. Interestingly, the mss2Δ mutant strains exhibited significantly impaired invasive ability in vitro and ex vivo but retained normal hyphal development ability in liquid medium. Furthermore, the MSS2 deletion strains could not form robust biofilms and exhibited significantly reduced virulence. Collectively, these results demonstrated that the antifungal effect of chitosan against C. albicans is mediated via inhibition of mitochondrial biogenesis. These data may provide another strategy for antifungal drug development via inhibition of fungal mitochondria.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/patogenicidad , Quitosano/farmacología , Mitocondrias/metabolismo , Animales , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Humanos , Hifa/crecimiento & desarrollo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Virulencia/genética
10.
mSphere ; 6(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408237

RESUMEN

Ching-Hsuan Lin works in the field of Candida biology. In this mSphere of Influence article, he reflects on how the papers "Use of ichip for high-throughput in situ cultivation of uncultivable microbial species" by D. Nichols, N. Cahoon, E. M. Trakhtenberg, L. Pham, et al. (Appl Environ Microbiol 76:2445-2450, 2010, https://doi.org/10.1128/AEM.01754-09) and "A new antibiotic kills pathogens without detectable resistance" by L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, et al. (Nature 517:455-459, 2015, https://doi.org/10.1038/nature14098) made an impact on him by inspiring him to explore new bioactive antimicrobial compounds with his collaborators.


Asunto(s)
Antifúngicos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Suelo/química , Antifúngicos/análisis , Candida/efectos de los fármacos , Hongos/efectos de los fármacos , Humanos , Masculino , Narración
11.
Curr Genet ; 67(2): 249-254, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33388851

RESUMEN

Morphological transitions in Candida species are key factors in facilitating invasion and adapting to environmental changes. N-acetylglucosamine (GlcNAc) is a monosaccharide signalling molecule that can regulate morphological transitions in Candida albicans and Candida tropicalis. Interestingly, although the uptake and metabolic pathways of GlcNAc and GlcNAc-mediated white-to-opaque cell switching are similar between the two Candida species, GlcNAc induces hyphal development in C. albicans, whereas it suppresses hyphal development in C. tropicalis. These findings indicate that the characteristics of C. albicans and C. tropicalis in response to GlcNAc are remarkably different. Here, we compare the conserved and divergent GlcNAc-mediated signalling pathways and catabolism between the two Candida species. Deletion of NGT1, a GlcNAc transportation gene, inhibited hyphal formation in C. albicans but promoted hyphal development in C. tropicalis. To further understand these opposite effects on filamentous growth in response to GlcNAc in the two Candida species, the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling pathways in both C. albicans and C. tropicalis were compared. Interestingly, GlcNAc activated the cAMP/PKA signalling pathway of the two Candida species, suggesting that the hyphal development-regulated circuit is remarkably diverse between the two species. Indeed, the Ndt80-like gene REP1, which is critical for regulating GlcNAc catabolism, exhibits distinct roles in the hyphal development of C. albicans and C. tropicalis. These data suggest possible reasons for the divergent hyphal growth response in C. albicans and C. tropicalis upon GlcNAc induction.


Asunto(s)
Acetilglucosamina/genética , Proteínas Fúngicas/genética , Hifa/genética , N-Acetilglucosaminiltransferasas/genética , Acetilglucosamina/metabolismo , Transporte Biológico/genética , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida tropicalis/genética , Candida tropicalis/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Transducción de Señal/genética
12.
Med Mycol ; 59(4): 379-391, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32712662

RESUMEN

NDT80-like family genes are highly conserved across a large group of fungi, but the functions of each Ndt80 protein are diverse and have evolved differently among yeasts and pathogens. The unique NDT80 gene in budding yeast is required for sexual reproduction, whereas three NDT80-like genes, namely, NDT80, REP1, and RON1, found in Candida albicans exhibit distinct functions. Notably, it was suggested that REP1, rather than RON1, is required for N-acetylglucosamine (GlcNAc) catabolism. Although Candida tropicalis, a widely dispersed fungal pathogen in tropical and subtropical areas, is closely related to Candida albicans, its phenotypic, pathogenic and environmental adaptation characteristics are remarkably divergent. In this study, we focused on the Ron1 transcription factor in C. tropicalis. Protein alignment showed that C. tropicalis Ron1 (CtRon1) shares 39.7% identity with C. albicans Ron1 (CaRon1). Compared to the wild-type strain, the C. tropicalis ron1Δ strains exhibited normal growth in different carbon sources and had similar expression levels of several GlcNAc catabolic genes during GlcNAc treatment. In contrast, C. tropicalis REP1 is responsible for GlcNAc catabolism and is involved in GlcNAc catabolic gene expressions, similar to C. albicans Rep1. However, REP1 deletion strains in C. tropicalis promote hyphal development in GlcNAc with low glucose content. Interestingly, CtRON1, but not CaRON1, deletion mutants exhibited significantly impaired hyphal growth and biofilm formation. As expected, CtRON1 was required for full virulence. Together, the results of this study showed divergent functions of CtRon1 compared to CaRon1; CtRon1 plays a key role in yeast-hyphal dimorphism, biofilm formation and virulence. LAY ABSTRACT: In this study, we identified the role of RON1, an NDT80-like gene, in Candida tropicalis. Unlike the gene in Candida albicans, our studies showed that RON1 is a key regulator of hyphal formation, biofilm development and virulence but is dispensable for N-acetylglucosamine catabolism in C. tropicalis.


Asunto(s)
Acetilglucosamina/metabolismo , Biopelículas/crecimiento & desarrollo , Candida tropicalis/crecimiento & desarrollo , Candida tropicalis/genética , Hifa/crecimiento & desarrollo , Proteínas Tirosina Quinasas Receptoras/genética , Candida tropicalis/patogenicidad , Candida tropicalis/fisiología , Regulación Fúngica de la Expresión Génica , Virulencia/genética
13.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153228

RESUMEN

(1) Background: Few antifungal drugs are currently available, and drug-resistant strains have rapidly emerged. Thus, the aim of this study is to evaluate the effectiveness of the antifungal activity from a combinational treatment of chitosan with a clinical antifungal drug on Candida albicans and Candida tropicalis. (2) Methods: Minimum inhibitory concentration (MIC) tests, checkerboard assays, and disc assays were employed to determine the inhibitory effect of chitosan with or without other antifungal drugs on C. albicans and C. tropicalis. (3) Results: Treatment with chitosan in combination with fluconazole showed a great synergistic fungicidal effect against C. albicans and C. tropicalis, but an indifferent effect on antifungal activity when challenged with chitosan-amphotericin B or chitosan-caspofungin simultaneously. Furthermore, the combination of chitosan and fluconazole was effective against drug-resistant strains. (4) Conclusions: These findings provide strong evidence that chitosan in combination with fluconazole is a promising therapy against two Candida species and its drug-resistant strains.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida albicans/crecimiento & desarrollo , Candida tropicalis/crecimiento & desarrollo , Quitosano/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacología
14.
Microorganisms ; 8(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32369936

RESUMEN

Molecular mechanisms of biofilm formation in Candida tropicalis and current methods for biofilm analyses in this fungal pathogen are limited. (2) Methods: Biofilm biomass and crystal violet staining of the wild-type and each gene mutant strain of C. tropicalis were evaluated on silicone under synthetic urine culture conditions. (3) Results: Seven media were tested to compare the effects on biofilm growth with or without silicone. Results showed that biofilm cells of C. tropicalis were unable to form firm biofilms on the bottom of 12-well polystyrene plates. However, on a silicone-based platform, Roswell Park Memorial Institute 1640 (RPMI 1640), yeast nitrogen base (YNB) + 1% glucose, and synthetic urine media were able to induce strong biofilm growth. In particular, replacement of Spider medium with synthetic urine in the adherence step and the developmental stage is necessary to gain remarkably increased biofilms. Interestingly, unlike Candida albicans, the C. tropicalis ROB1 deletion strain but not the other five biofilm-associated mutants did not cause a significant reduction in biofilm formation, suggesting that the biofilm regulatory circuits of the two species are divergent. (4) Conclusions: This system for C. tropicalis biofilm analyses will become a useful tool to unveil the biofilm regulatory network in C. tropicalis.

15.
Polymers (Basel) ; 12(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121526

RESUMEN

The ability to tune the surface properties of a polymer film in a simple and effective manner is important for diverse biological, industrial, and environmental applications. In this work, we investigated whether or not the surface free energy of poly(vinyl phenol; PVPh) can be tuned by adjusting the casting solvent and the thermal treatment time, which alters the proportions of intra-and intermolecular hydrogen bonding interactions. Compared to the untreated sample, in tetrahydrofuran (THF) system, the thermal treatment resulted in a lower proportion of intermolecular hydrogen bonds and a concomitant decrease in the surface free energy (from 39.3 to 18.8 mJ/m2). In contrast, the thermal treatment in propylene glycol methyl ether acetate (PGMEA) and ethyl-3-ethoxypropionate (EEP) systems increased the proportion of intermolecular hydrogen bonds and the surface free energy of the polymer thin films, from 45.0 to 54.3 mJ/m2 for PGMEA and from 45.5 to 52.9 mJ/m2 for EEP. Controlling intermolecular hydrogen-bonding interactions is a unique and easy method for tuning the surface free energies of polymer substances.

16.
Chemistry ; 26(60): 13668-13676, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33463782

RESUMEN

Solid-state white light-emitting electrochemical cells (LECs) show promising advantages of simple solution fabrication processes, low operation voltage, and compatibility with air-stable cathode metals, which are required for lighting applications. To date, white LECs based on ionic transition metal complexes (iTMCs) have shown higher device efficiencies than white LECs employing other types of materials. However, lower emission efficiencies of red iTMCs limit further improvement in device performance. As an alternative, efficient red CdZnSeS/ZnS core/shell quantum dots were integrated with a blue iTMC to form a hybrid white LEC in this work. By achieving good carrier balance in an appropriate device architecture, a peak external quantum efficiency and power efficiency of 11.2 % and 15.1 lm W-1, respectively, were reached. Such device efficiency is indeed higher than those of the reported white LECs based on host-guest iTMCs. Time- and voltage-dependent electroluminescence (EL) characteristics of the hybrid white LECs were studied by means of the temporal evolution of the emission-zone position extracted by fitting the simulated and measured EL spectra. The working principle of the hybrid white LECs was clarified, and the high device efficiency makes potential new white-emitting devices suitable for solid-state lighting technology possible.

17.
Med Mycol ; 58(4): 521-529, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31281934

RESUMEN

Fungal infections, particularly Candida species, have increased worldwide and caused high morbidity and mortality rates. The toxicity and development of resistance in present antifungal drugs justify the need of new drugs with different mechanism of action. BMVC-12C-P, a carbazole-type compound, has been found to dysfunction mitochondria. BMVC-12C-P displayed the strongest antifungal activities among all of the BMVC derivatives. The minimal inhibitory concentration (MIC) of BMVC-12C-P against Candida species ranged from 1 to 2 µg/ml. Fluconazole-resistant clinical isolates of Candida species were highly susceptible to BMVC-12C-P. The potent fungicidal activity of BMVC-12C-P relates to its impairing mitochondrial function. Furthermore, we found that the hyphae growth and biofilm formation were suppressed in C. albicans survived from BMVC-12C-P treatment. This study demonstrates the potential of BMVC-12C-P as an antifungal agent for treating Candida infections.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Carbazoles/química , Carbazoles/farmacología , Farmacorresistencia Fúngica , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Antifúngicos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/clasificación , Fluconazol/farmacología , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mitocondrias/efectos de los fármacos , Mitocondrias/patología
18.
ACS Omega ; 4(5): 9092-9101, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459997

RESUMEN

The object of this work is to prepare quinoxaline-based benzoxazines and evaluate thermal properties of their thermosets. For this object, 4,4'-(quinoxaline-2,3-diyl)diphenol (QDP)/furfurylamine-based benzoxazine (QDP-fu) and 4,4',4″,4‴-([6,6'-biquinoxaline]-2,2',3,3'-tetrayl)tetraphenol (BQTP)/furfurylamine-based benzoxazine (BQTP-fu) were prepared. The structures of QDP-fu and BQTP-fu were successfully confirmed by FTIR and 1H and 13C NMR spectra. We studied the curing behavior of QDP-fu and BQTP-fu and thermal properties of their thermosets. According to DSC thermograms, QDP-fu and BQTP-fu have the attractive onset exothermic temperatures of 181 and 186 °C, respectively. The onset temperature is approximately 45 °C lower than that of a bisphenol A/furfurylamine-based benzoxazines. According to DMA TMA and TGA thermograms, the thermoset of BQTP-fu shows impressive thermal properties, with a T g value of 418 °C, a coefficient of thermal expansion of 39 ppm/°C, a 5% decomposition temperature of 430 °C, and a char yield of 72%.

19.
Polymers (Basel) ; 11(7)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337137

RESUMEN

Superhydrophobic materials have immense applications in the fields of industry and research. However, their durability is still a cause for concern. A facile method for preparing durable superhydrophobic films from carbon nanotubes (CNTs) and the main-chain type polybenzoxazine precursors is reported herein. We used probe ultrasonicator to prepare CNT/polybenzoxazine coatings. Compared with the general sonicating dispersion process, the dispersion time was greatly reduced from a few hours to 5 minutes and the prepared suspension exhibited film-forming characteristics well. The CNT/polybenzoxazine films, which do not contain any fluorinated compounds, exhibit remarkable durability against thermal treatment, organic solvents, corrosive liquids, and sandpaper abrasion, while retaining their superhydrophobicity. Furthermore, these CNT/polybenzoxazine films also showed durable superhydrophobicity after ultraviolet (UV) irradiation for 100 h. This CNT/polybenzoxazine film can be readily used for practical applications to make durable superhydrophobic coatings.

20.
Langmuir ; 35(22): 7212-7221, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31083950

RESUMEN

Surface metallization of polyimide (PI) is the key process for the preparation of flexible printed circuit boards (FPCBs). To meet the miniaturization demand, the ultrathinness of FPCB by the removal of the intermediate adhesive layer is imperative. The common adhesiveless process relies on the surface activation of hydrophobic PI through alkaline hydrolysis to generate the hydrophilic carboxylate anion sites for the metallic deposition. However, the alkaline hydrolysis process involves the imide ring cleavage caused by the attack of a strong nucleophile (OH-), resulting in mechanical destruction and surface coarseness of PI. In this study, a new PI is synthesized with the grafting of carboxylic acid groups as the active sites to intrinsically activate PI for efficient metallization. The surface activation is accomplished through an acid-base neutralization reaction in a dilute alkaline environment, which can suppress the alkaline hydrolysis reaction. The attenuated total reflection Fourier transform infrared spectroscopy analysis confirms a significant reduction of the extent of the imide ring cleavage in the carboxylic acid-grafted PI films. According to the microstructural examination using transmission electron microscopy, the deposited metal film adheres firmly to the carboxylic acid-grafted PI films through an interlocking effect of a broccoli bud-shaped nanocluster layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...