Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38745497

RESUMEN

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

2.
Diagnostics (Basel) ; 14(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38786296

RESUMEN

BACKGROUND: Spheroids generated by tumor cells collected from malignant pleural effusion (MPE) were shown to retain the characteristics of the original tumors. This ex vivo model might be used to predict the response of non-small cell lung cancer (NSCLC) to anticancer treatments. METHODS: The characteristics, epidermal growth factor receptor (EGFR) mutation status, and clinical response to EGFR-TKIs treatment of enrolled patients were recorded. The viability of the spheroids generated from MPE of enrolled patients were evaluated by visualization of the formazan product of the MTT assay. RESULTS: Spheroids were generated from 14 patients with NSCLC-related MPE. Patients with EGFR L861Q, L858R, or Exon 19 deletion all received EGFR-TKIs, and five of these seven patients responded to treatment. The viability of the spheroids generated from MPE of these five patients who responded to EGFR-TKIs treatment was significantly reduced after gefitinib treatment. On the other hand, gefitinib treatment did not reduce the viability of the spheroids generated from MPE of patients with EGFR wild type, Exon 20 insertion, or patients with sensitive EGFR mutation but did not respond to EGFR-TKIs treatment. CONCLUSION: Multicellular spheroids generated from NSCLC-related MPE might be used to predict the response of NSCLC to treatment.

3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673935

RESUMEN

Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.


Asunto(s)
Nefropatías Diabéticas , Macrófagos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Macrófagos/metabolismo , Macrófagos/inmunología , Animales , Fibrosis
4.
Virus Res ; 345: 199379, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38643859

RESUMEN

Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.

5.
Diagnostics (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535040

RESUMEN

Hospital revisits significantly contribute to financial burden. Therefore, developing strategies to reduce hospital revisits is crucial for alleviating the economic impacts. However, this critical issue among peritoneal dialysis (PD) patients has not been explored in previous research. This single-center retrospective study, conducted at Chang Gung Memorial Hospital, Chiayi branch, included 1373 PD patients who visited the emergency room (ER) between Jan 2002 and May 2018. The objective was to predict hospital revisits, categorized into 72-h ER revisits and 14-day readmissions. Of the 1373 patients, 880 patients visiting the ER without subsequent hospital admission were analyzed to predict 72-h ER revisits. The remaining 493 patients, who were admitted to the hospital, were studied to predict 14-day readmissions. Logistic regression and decision tree methods were employed as prediction models. For the 72-h ER revisit study, 880 PD patients had a revisit rate of 14%. Both logistic regression and decision tree models demonstrated a similar performance. Furthermore, the logistic regression model identified coronary heart disease as an important predictor. For 14-day readmissions, 493 PD patients had a readmission rate of 6.1%. The decision tree model outperformed the logistic model with an area under the curve value of 79.4%. Additionally, a high-risk group was identified with a 36.4% readmission rate, comprising individuals aged 41 to 47 years old with a low alanine transaminase level ≤15 units per liter. In conclusion, we present a study using regression and decision tree models to predict hospital revisits in PD patients, aiding physicians in clinical judgment and improving care.

6.
Nephrology (Carlton) ; 29(5): 245-258, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462235

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.


Asunto(s)
Fallo Renal Crónico , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/terapia , Riñón Poliquístico Autosómico Dominante/complicaciones , Taiwán/epidemiología , Tolvaptán , Riñón
7.
Sci Rep ; 14(1): 7018, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528020

RESUMEN

This study showcases a method for achieving high-performance yellow and red micro-LEDs through precise control of indium content within quantum wells. By employing a hybrid quantum well structure with our six core technologies, we can accomplish outstanding external quantum efficiency (EQE) and robust stripe bandwidth. The resulting 30 µm × 8 micro-LED arrays exhibit maximum EQE values of 11.56% and 5.47% for yellow and red variants, respectively. Notably, the yellow micro-LED arrays achieve data rates exceeding 1 Gbit/s for non-return-to-zero on-off keying (NRZ-OOK) format and 1.5 Gbit/s for orthogonal frequency-division multiplexing (OFDM) format. These findings underscore the significant potential of long-wavelength InGaN-based micro-LEDs, positioning them as highly promising candidates for both full-color microdisplays and visible light communication applications.

8.
Nat Commun ; 15(1): 2386, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493205

RESUMEN

Charge density waves (CDWs) involved with electronic and phononic subsystems simultaneously are a common quantum state in solid-state physics, especially in low-dimensional materials. However, CDW phase dynamics in various dimensions are yet to be studied, and their phase transition mechanism is currently moot. Here we show that using the distinct temperature evolution of orientation-dependent ultrafast electron and phonon dynamics, different dimensional CDW phases are verified in CuTe. When the temperature decreases, the shrinking of c-axis length accompanied with the appearance of interchain and interlayer interactions causes the quantum fluctuations (QF) of the CDW phase until 220 K. At T < 220 K, the CDWs on the different ab-planes are finally locked with each other in anti-phase to form a CDW phase along the c-axis. This study shows the dimension evolution of CDW phases in one CDW system and their stabilized mechanisms in different temperature regimes.

9.
Nat Commun ; 15(1): 653, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253575

RESUMEN

Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.

10.
Discov Nano ; 18(1): 149, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062340

RESUMEN

Free-space optical communications hold promising advantages, including a large bandwidth, access to license-free spectrum, high data rates, quick and simple deployment, low power consumption, and relaxed quality requirements. Nevertheless, key technical challenges remain, such as a higher transmission efficiency, a lower transmission loss, and a smaller form factor of optical systems. Here, we demonstrate the viability of circular-polarization-multiplexed multi-channel optical communication using metasurfaces alongside a photonic-crystal surface-emitting laser (PCSEL) light source at wavelength of 940 nm. Through the light manipulation with metasurface, we split the linearly polarized incidence into left and right circular polarizations with desired diffraction angles. Such orthogonal polarization states provide a paradigm of polarization division multiplexing technique for light communication. The PCSEL light source maintains a low divergence angle of about 0.373 degrees after passing through an ultra-thin metasurface without further bulky collimator or light guide, making end-to-end (E2E) and device-to-device (D2D) communications available in a compact form. Both light source and modulated polarized light exhibit a - 3 dB bandwidth over 500 MHz, with successful 1 Gbit/s transmission demonstrated in eye diagrams. Our results affirm that metasurface effectively boosts transmission capacity without compromising the light source's inherent properties. Future metasurface designs could expand channel capacity, and its integration with PCSEL monolithically holds promise for reducing interface losses, thereby enhancing efficiency.

11.
NPJ Digit Med ; 6(1): 231, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097771

RESUMEN

The monitoring of physiological parameters is a crucial topic in promoting human health and an indispensable approach for assessing physiological status and diagnosing diseases. Particularly, it holds significant value for patients who require long-term monitoring or with underlying cardiovascular disease. To this end, Visual Contactless Physiological Monitoring (VCPM) is capable of using videos recorded by a consumer camera to monitor blood volume pulse (BVP) signal, heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2) and blood pressure (BP). Recently, deep learning-based pipelines have attracted numerous scholars and achieved unprecedented development. Although VCPM is still an emerging digital medical technology and presents many challenges and opportunities, it has the potential to revolutionize clinical medicine, digital health, telemedicine as well as other areas. The VCPM technology presents a viable solution that can be integrated into these systems for measuring vital parameters during video consultation, owing to its merits of contactless measurement, cost-effectiveness, user-friendly passive monitoring and the sole requirement of an off-the-shelf camera. In fact, the studies of VCPM technologies have been rocketing recently, particularly AI-based approaches, but few are employed in clinical settings. Here we provide a comprehensive overview of the applications, challenges, and prospects of VCPM from the perspective of clinical settings and AI technologies for the first time. The thorough exploration and analysis of clinical scenarios will provide profound guidance for the research and development of VCPM technologies in clinical settings.

12.
Nano Lett ; 23(22): 10490-10497, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37909686

RESUMEN

The energy transfer (ET) between organic molecules and semiconductors is a crucial mechanism for enhancing the performance of semiconductor-based optoelectronic devices, but it remains undiscovered. Here, ultrafast optical pump-probe spectroscopy was utilized to directly reveal the ET between organic Alq3 molecules and Si semiconductors. Ultrathin SiO2 dielectric layers with a thickness of 3.2-10.8 nm were inserted between Alq3 and Si to prevent charge transfer. By means of the ET from Alq3 to Si, the SiO2 thickness-dependent relaxation dynamics of photoexcited carriers in Si have been unambiguously observed on the transient reflectivity change (ΔR/R) spectra, especially for the relaxation process on a time scale of 200-350 ps. In addition, these findings also agree with the results of our calculation in a model of long-range dipole-dipole interactions, which provides critical information for developing future optoelectronic devices.

13.
Microbiol Spectr ; 11(6): e0225423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874136

RESUMEN

IMPORTANCE: Eukaryotic DNA replication is a highly regulated process that requires multiple replication enzymes assembled onto DNA replication origins. Due to the complexity of the cell's DNA replication machinery, most of what we know about cellular DNA replication has come from the study of viral systems. Herein, we focus our study on the assembly of the Kaposi's sarcoma-associated herpesvirus core replication complex and propose a pairwise protein-protein interaction network of six highly conserved viral core replication proteins. A detailed understanding of the interaction and assembly of the viral core replication proteins may provide opportunities to develop new strategies against viral propagation.


Asunto(s)
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas Virales/genética , Replicación del ADN
14.
Nat Commun ; 14(1): 5243, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640725

RESUMEN

The scaling of transistors with thinner channel thicknesses has led to a surge in research on two-dimensional (2D) and quasi-2D semiconductors. However, modulating the threshold voltage (VT) in ultrathin transistors is challenging, as traditional doping methods are not readily applicable. In this work, we introduce a optical-thermal method, combining ultraviolet (UV) illumination and oxygen annealing, to achieve broad-range VT tunability in ultrathin In2O3. This method can achieve both positive and negative VT tuning and is reversible. The modulation of sheet carrier density, which corresponds to VT shift, is comparable to that obtained using other doping and capacitive charging techniques in other ultrathin transistors, including 2D semiconductors. With the controllability of VT, we successfully demonstrate the realization of depletion-load inverter and multi-state logic devices, as well as wafer-scale VT modulation via an automated laser system, showcasing its potential for low-power circuit design and non-von Neumann computing applications.

15.
Discov Nano ; 18(1): 95, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498403

RESUMEN

In this study, we have demonstrated the potential of InGaN-based red micro-LEDs with single quantum well (SQW) structure for visible light communication applications. Our findings indicate the SQW sample has a better crystal quality, with high-purity emission, a narrower full width at half maximum, and higher internal quantum efficiency, compared to InGaN red micro-LED with a double quantum wells (DQWs) structure. The InGaN red micro-LED with SQW structure exhibits a higher maximum external quantum efficiency of 5.95% and experiences less blueshift as the current density increases when compared to the DQWs device. Furthermore, the SQW device has a superior modulation bandwidth of 424 MHz with a data transmission rate of 800 Mbit/s at an injection current density of 2000 A/cm2. These results demonstrate that InGaN-based SQW red micro-LEDs hold great promise for realizing full-color micro-display and visible light communication applications.

16.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296628

RESUMEN

Type 1 diabetes is an inflammatory state. Myeloid-derived suppressive cells (MDSCs) originate from immature myeloid cells and quickly expand to control host immunity during infection, inflammation, trauma, and cancer. This study presents an ex vivo procedure to develop MDSCs from bone marrow cells propagated from granulocyte-macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-6, and IL-1ß cytokines expressing immature morphology and high immunosuppression of T-cell proliferation. The adoptive transfer of cytokine-induced MDSCs (cMDSCs) improved the hyperglycemic state and prolonged the diabetes-free survival of nonobese diabetic (NOD) mice with severe combined immune deficiency (SCID) induced by reactive splenic T cells harvested from NOD mice. In addition, the application of cMDSCs reduced fibronectin production in the renal glomeruli and improved renal function and proteinuria in diabetic mice. Moreover, cMDSCs use mitigated pancreatic insulitis to restore insulin production and reduce the levels of HbA1c. In conclusion, administering cMDSCs propagated from GM-CSF, IL-6, and IL-1ß cytokines provides an alternative immunotherapy protocol for treating diabetic pancreatic insulitis and renal nephropathy.


Asunto(s)
Diabetes Mellitus Experimental , Células Supresoras de Origen Mieloide , Ratones , Animales , Citocinas/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Diabetes Mellitus Experimental/terapia , Ratones Endogámicos NOD
17.
Discov Nano ; 18(1): 77, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37382747

RESUMEN

This study presents a comprehensive analysis of the structural and optical properties of an InGaN-based red micro-LED with a high density of V-shaped pits, offering insights for enhancing emission efficiency. The presence of V-shaped pits is considered advantageous in reducing non-radiative recombination. Furthermore, to systematically investigate the properties of localized states, we conducted temperature-dependent photoluminescence (PL). The results of PL measurements indicate that deep localization in the red double quantum wells can limit carrier escape and improve radiation efficiency. Through a detailed analysis of these results, we extensively investigated the direct impact of epitaxial growth on the efficiency of InGaN red micro-LEDs, thereby laying the foundation for improving efficiency in InGaN-based red micro-LEDs.

18.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239956

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to inadequate insulin secretion, resistance, or both. The cardiovascular complications of DM are the leading cause of morbidity and mortality in diabetic patients. There are three major types of pathophysiologic cardiac remodeling including coronary artery atherosclerosis, cardiac autonomic neuropathy, and DM cardiomyopathy in patients with DM. DM cardiomyopathy is a distinct cardiomyopathy characterized by myocardial dysfunction in the absence of coronary artery disease, hypertension, and valvular heart disease. Cardiac fibrosis, defined as the excessive deposition of extracellular matrix (ECM) proteins, is a hallmark of DM cardiomyopathy. The pathophysiology of cardiac fibrosis in DM cardiomyopathy is complex and involves multiple cellular and molecular mechanisms. Cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction (HFpEF), which increases mortality and the incidence of hospitalizations. As medical technology advances, the severity of cardiac fibrosis in DM cardiomyopathy can be evaluated by non-invasive imaging modalities such as echocardiography, heart computed tomography (CT), cardiac magnetic resonance imaging (MRI), and nuclear imaging. In this review article, we will discuss the pathophysiology of cardiac fibrosis in DM cardiomyopathy, non-invasive imaging modalities to evaluate the severity of cardiac fibrosis, and therapeutic strategies for DM cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hiperglucemia , Humanos , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Fibrosis , Hiperglucemia/metabolismo
19.
Adv Sci (Weinh) ; 10(17): e2300845, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132589

RESUMEN

Plumbene, with a structure similar to graphene, is expected to possess a strong spin-orbit coupling and thus enhances its superconducting critical temperature (Tc ). In this work, a buckled plumbene-Au Kagome superstructure grown by depositing Au on Pb(111) is investigated. The superconducting gap monitored by temperature-dependent scanning tunneling microscopy/spectroscopy shows that the buckled plumbene-Au Kagome superstructure not only has an enhanced Tc with respect to that of a monolayer Pb but also possesses a higher value than what owned by a bulk Pb substrate. By combining angle-resolved photoemission spectroscopy with density functional theory, the monolayer Au-intercalated low-buckled plumbene sandwiched between the top Au Kagome layer and the bottom Pb(111) substrate is confirmed and the electron-phonon coupling-enhanced superconductivity is revealed. This work demonstrates that a buckled plumbene-Au Kagome superstructure can enhance superconducting Tc and Rashba effect, effectively triggering the novel properties of a plumbene.

20.
BMC Cardiovasc Disord ; 23(1): 272, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221514

RESUMEN

BACKGROUND: Little research has been done on ischemic outcomes related to left ventricular ejection fraction (EF) in acute decompensated heart failure (ADHF). METHODS: A retrospective cohort study was conducted between 2001 and 2021 using the Chang Gung Research Database. ADHF Patients discharged from hospitals between January 1, 2005, and December 31, 2019. Cardiovascular (CV) mortality and heart failure (HF) rehospitalization are the primary outcome components, along with all-cause mortality, acute myocardial infarction (AMI) and stroke. RESULTS: A total of 12,852 ADHF patients were identified, of whom 2,222 (17.3%) had HFmrEF, the mean (SD) age was 68.5 (14.6) years, and 1,327 (59.7%) were males. In comparison with HFrEF and HFpEF patients, HFmrEF patients had a significant phenotype comorbid with diabetes, dyslipidemia, and ischemic heart disease. Patients with HFmrEF were more likely to experience renal failure, dialysis, and replacement. Both HFmrEF and HFrEF had similar rates of cardioversion and coronary interventions. There was an intermediate clinical outcome between HFpEF and HFrEF, but HFmrEF had the highest rate of AMI (HFpEF, 9.3%; HFmrEF, 13.6%; HFrEF, 9.9%). The AMI rates in HFmrEF were higher than those in HFpEF (AHR, 1.15; 95% Confidence Interval, 0.99 to 1.32) but not in HFrEF (AHR, 0.99; 95% Confidence Interval, 0.87 to 1.13). CONCLUSION: Acute decompression in patients with HFmrEF increases the risk of myocardial infarction. The relationship between HFmrEF and ischemic cardiomyopathy, as well as optimal anti-ischemic treatment, requires further research on a large scale.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Isquemia Miocárdica , Masculino , Femenino , Humanos , Volumen Sistólico , Estudios Retrospectivos , Función Ventricular Izquierda , Estudios de Cohortes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...