Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0291515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427678

RESUMEN

Under the influence of development strategies with regard to national fitness and health in China, the interactive development between national fitness and national health is becoming increasingly strong. To explore the coupling and coordination relationship between national fitness and national health, this paper conducts an empirical analysis of the coupling and coordination relationship between national fitness and national health in 11 provinces and cities in Eastern China using the entropy weight method, a coupling coordination model, spatial visualization of the coupling coordination degree and spatial autocorrelation analysis. The research confirms that the comprehensive development level of national fitness and national health in Eastern China shows a steady upward trend, with a lag in national fitness as a whole, and that the growth rate of national fitness development is faster than that of national health development. The coupling coordination degree of the two systems of national fitness and national health in Eastern China shows a slow upward trend, and the coupling coordination degree rises from barely coordinated to primary coordination. There are significant differences in the spatial pattern of coupling coordination: the spatial pattern from north to south generally shows 'low-high-high-low-high-low' characteristics, and the spatial spillover effect of coupling coordination in various regions has not yet appeared. The revised GM(1.1) prediction results indicate that the level and improvement rate of coupling coordination will accelerate significantly in the next 10 years, but the spatial differences will still exist. Finally, suggestions are proposed to optimize the coupling and coordinated development of national fitness and national health based on policy guarantees as well as strengthening and cross-regional cooperation.


Asunto(s)
Ejercicio Físico , Políticas , Ciudades , China , Entropía
2.
Small ; 20(12): e2307960, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946615

RESUMEN

The quality of two-step processed perovskites is significantly influenced by the distribution of organic amine salts. Especially, modulating the distribution of organic amine salts remains a grand challenge for sequential vapor-deposited perovskites due to the blocking effect of bottom compact PbI2. Herein, an ultrahigh humidity treatment strategy is developed to facilitate the diffusion of formamidinium iodide (FAI) from the top surface to the buried bottom interface on the sequential vapor-deposited bilayer structure. Both experimental and theoretical investigations elucidate the mechanism that moisture helps to i) create FAI diffusion channels by inducing a phase transition from α- to δ-phase in the perovskite, and ii) enhance the diffusivity of FAI by forming hydrogen bonds. This ultrahigh humidity treatment strategy enables the formation of a desired homogeneous and high-quality α-phase after annealing. As a result, a champion efficiency of 22.0% is achieved and 97.5% of its initial performance is maintained after aging for 1050 h under ambient air with a relative humidity of up to 80%. This FAI diffusion strategy provides new insights into the reproducible, scalable, and high-performance sequential vapor-deposited perovskite solar cells.

3.
Adv Sci (Weinh) ; 11(5): e2304274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050650

RESUMEN

Chronic prostatic inflammation promotes cell survival and fibrosis, leading to benign prostatic hyperplasia (BPH) with aggravated urinary symptoms. It is investigated whether yes-associated protein 1 (YAP1), an organ size controller and mechanical transductor, is implicated in inflammation-induced BPH. The correlation between YAP1 expression and fibrosis in human and rat BPH specimens is analyzed. Furthermore, the effects of YAP1 activation on prostatic cell survival and fibrosis, as well as the underlying mechanism, are also studied. As a result, total and nuclear YAP1 expression, along with downstream genes are significantly upregulated in inflammation-associated human and rat specimens. There is a significant positive correlation between YAP1 expression and the severity of fibrosis or clinical performance. YAP1 silencing suppresses cell survival by decreasing cell proliferation and increasing apoptosis, and alleviates fibrosis by reversing epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition in prostatic BPH-1 and WPMY-1 cells. Mechanistically, inflammatory stimulus and rigid matrix stiffness synergistically activate the RhoA/ROCK1 pathway to provoke cytoskeleton remodeling, thereby promoting YAP1 activation to exacerbate BPH development. Overall, inflammation-triggered mechanical stiffness reinforcement activates the RhoA/ROCK1/F-actin/YAP1 axis, thereby promoting prostatic cell survival and fibrosis to accelerate BPH progression.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Supervivencia Celular , Fibrosis , Inflamación , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/farmacología , Factores de Transcripción/metabolismo
4.
Bladder (San Franc) ; 10: e21200008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022708

RESUMEN

The ability for bladder to perceive and analyze mechanical stimuli, such as stretch and filling, is crucial for its functions, such as urinary storage and voiding. The Piezo channel family, including Piezo1 and Piezo2, represents one of the most essential mechanosensitive ion channels in mammals and is involved in a wide array of physiological and pathological processes. It has been demonstrated in numerous investigations that Piezo channels play a key role in mechanical transduction in various types of cells in bladder by converting mechanical stimuli into biological signals. Notably, mounting evidence suggests that Piezo channels are functionally significant for bladder and are related to several bladder disorders. This review systematically summarizes the importance/role and features of Piezo channels in bladder, including their biophysical properties, location, and functions, with attention specifically paid to their association with the physiology and pathophysiology of bladder. This review aims to provide a novel perspective for the future clinical treatment of bladder dysfunction.

5.
Sci Rep ; 13(1): 17910, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863991

RESUMEN

As men age, a growing number develop benign prostatic hyperplasia (BPH). According to previous research, diabetes may be a risk factor. Pyruvate dehydrogenase kinase 4 (PDK4) is closely related to glucose metabolism and plays a role in the onset and progression of numerous illnesses. This study aimed to determine the direct effects of high glucose environment on prostate epithelial cells, in particular by altering PDK4 expression levels. In this investigation, normal prostatic epithelial cells (RWPE-1) and human benign prostatic hyperplasia epithelial cells (BPH-1) were treated with 50 mM glucose to show the alteration of high glucose in prostate cells. PDK4-target siRNA, PDK4-expression plasmid were used to investigate the effects of PDK4. Rosiglitazone (RG), a PPARγ agonist, with the potential to up-regulate PDK4 expression was also used for treating prostate cells. The expression of PDK4 in human prostate samples was also analyzed. The effects of high glucose therapy on BPH-1 and RWPE-1 cells were demonstrated to enhance proliferation, epithelial-mesenchymal transition (EMT), suppress apoptosis, and down-regulate PDK4 expression. Additionally, diabetes-related BPH patients had reduced PDK4 expression. Following the application of PDK4-target siRNA, a comparable outcome was seen. The PDK4-expression plasmid therapy, however, produced the opposite results. RG with the ability to elevate PDK4 expression might be used to treat BPH. Changes in the metabolism of lipids and glucose may be the cause of these consequences. These findings showed that high glucose treatment might facilitate BPH development, and may be related to the down-regulation of PDK4. PDK4 might be a potential therapeutic target of BPH.


Asunto(s)
Diabetes Mellitus , Hiperplasia Prostática , Humanos , Masculino , Línea Celular , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hiperplasia Prostática/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
6.
Urology ; 179: 188-195, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315592

RESUMEN

OBJECTIVE: To develop two intelligent diagnosis models of detrusor overactivity (DO) based on deep learning to assist doctors no longer heavily rely on visual observation of urodynamic study (UDS) curves. METHODS: UDS curves of 92 patients were collected during 2019. We constructed two DO event recognition models based on convolutional neural network (CNN) with 44 samples, and tested the model performance with the remaining 48 samples by comparing other four classical machine learning models. During the testing phase, we developed a threshold screening strategy to quickly filter out suspected DO event segments in each patient's UDS curve. If two or more DO event fragments are determined to be DO by the diagnostic model, the patient is diagnosed as having DO. RESULTS: We extracted 146 DO event samples and 1863 non-DO event samples from the UDS curves of 44 patients to train CNN models. Through 10-fold cross-validation, the training accuracy and validation accuracy of our models achieved the highest accuracy. In the model testing phase, we used a threshold screening strategy to quickly screen out the suspected DO event samples in the UDS curve of another 48 patients, and then input them into the trained models. Finally, the diagnostic accuracy of patients without DO and patients with DO was 78.12% and 100%, respectively. CONCLUSION: Under the available data, the accuracy of the DO diagnostic model based on CNN is satisfactory. With the increase of the amount of data, the deep learning model is likely to have better performance. CLINICAL TRIAL REGISTRATION: This experiment was certified by the Chinese Clinical Trial Registry (ChiCTR2200063467).


Asunto(s)
Aprendizaje Profundo , Médicos , Humanos , Proyectos Piloto , Redes Neurales de la Computación , Aprendizaje Automático
7.
Front Oncol ; 13: 1131473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064095

RESUMEN

Background: Ferroptosis is a newly defined cell death process triggered by increased iron load and tremendous lipid reactive oxygen species (ROS). Oxidative stress-related ferroptosis is of great important to the occurrence and progression of clear cell renal cell carcinoma (ccRCC), which is particularly susceptibility to ferroptosis agonist. Therefore, exploring the molecular features of ferroptosis and oxidative stress might guide the clinical treatment and prognosis prediction for ccRCC patients. Methods: The differentially expressed ferroptosis and oxidative stress-associated genes (FPTOSs) between normal renal and ccRCC tissues were identified based on The Cancer Genome Atlas (TCGA) database, and those with prognostic significances were applied to develop a prognostic model and a risk scoring system (FPTOS_score). The clinical parameter, miRNA regulation, tumor mutation burden (TMB), immune cell infiltration, immunotherapy response, and drug susceptibility between two FPTOS-based risk stratifications were determined. Results: We have identified 5 prognosis-associated FPTOSs (ACADSB, CDCA3, CHAC1, MYCN, and TFAP2A), and developed a reliable FPTOS_socre system to distinguish patients into low- and high-risk groups. The findings implied that patients from the high-risk group performed poor prognoses, even after stratified analysis of various clinical parameters. A total of 30 miRNA-FPTOS regulatory pairs were recognized to identify the possible molecular mechanisms. Meanwhile, patients from the high-risk group exhibited higher TMB levels than those from the low-risk groups, and the predominant mutated driver genes were VHL, PBRM1 and TTN in both groups. The main infiltrating immune cells of high- and low-risk groups were CD8+ T cells and resting mast cells, respectively, and patients from the high-risk groups showed preferable drug responsiveness to anti-PD-1 immunotherapy. Eventually, potential sensitive drugs (cisplatin, BI-D1870, and docetaxel) and their enrichment pathways were identified to guide the treatment of ccRCC patients with high-risk. Conclusion: Our study comprehensively analyzed the expression profiles of FPTOSs and constructed a scoring system with considerable prognostic value, which would supply novel insights into the personalized treatment strategies and prognostic evaluation of ccRCC patient.

8.
Adv Sci (Weinh) ; 10(19): e2300586, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37098640

RESUMEN

Stability and scalability are essential and urgent requirements for the commercialization of perovskite solar cells (PSCs), which are retarded by the non-ideal interface leading to non-radiative recombination and degradation. Extensive efforts are devoted to reducing the defects at the perovskite surface. However, the effects of the buried interface on the degradation and non-radiative recombination need to be further investigated. Herein, an omnibearing strategy to modify buried and top surfaces of perovskite film to reduce interfacial defects, by incorporating aluminum oxide (Al2 O3 ) as a dielectric layer and growth scaffolds (buried surface) and phenethylammonium bromide as a passivation layer (buried and top surfaces), is demonstrated. Consequently, the open-circuit voltage is extensively boosted from 1.02 to 1.14 V with the incorporation of Al2 O3 filling the voids between grains, resulting in dense morphology of buried interface and reduced recombination centers. Finally, the impressive efficiencies of 23.1% (0.1 cm2 ) and 22.4% (1 cm2 ) are achieved with superior stability, which remain 96% (0.1 cm2 ) and 89% (1 cm2 ) of its initial performance after 1200 (0.1 cm2 ) and 2500 h (1 cm2 ) illumination, respectively. The dual modification provides a universal method to reduce interfacial defects, revealing a promising prospect in developing high-performance PSCs and modules.

9.
Small ; 19(34): e2301110, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086142

RESUMEN

A scalable and low-cost deposition of high-quality charge transport layers and photoactive perovskite layers are the grand challenges for large-area and efficient perovskite solar modules and tandem cells. An inverted structure with an inorganic hole transport layer is expected for long-term stability. Among various hole transport materials, nickel oxide has been investigated for highly efficient and stable perovskite solar cells. However, the reported deposition methods are either difficult for large-scale conformal deposition or require a high vacuum process. Chemical bath deposition is supposed to realize a uniform, conformal, and scalable coating by a solution process. However, the conventional chemical bath deposition requires a high annealing temperature of over 400 °C. In this work, an amino-alcohol ligand-based controllable release and deposition of NiOX using chemical bath deposition with a low calcining temperature of 270 °C is developed. The uniform and conformal in-situ growth precursive films can be adjusted by tuning the ligand structure. The inverted structured perovskite solar cells and large-area solar modules reached a champion PCE of 22.03% and 19.03%, respectively. This study paves an efficient, low-temperature, and scalable chemical bath deposition route for large-area NiOX thin films for the scalable fabrication of highly efficient perovskite solar modules.

10.
Biochem Biophys Res Commun ; 643: 157-168, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36610381

RESUMEN

RNA activation, as a method of regulating gene expression at the transcriptional level, is far less widely used than RNA interference because of the insufficient understanding of the mechanism and the unstable success rate. It is necessary to analyze the failure cases of RNA activation to promote the application of RNA activation. When we validated the saRNAs designed to induce KLK1 expression, we found that saKLK1-374 can upregulate KLK1 expression in prostate tumor cell lines, but failed in normal prostate cell lines. To determine whether the RNA activation of normal cells is difficult only when the target gene is KLK1, we tested p21WAF1/CIP1 as the target gene in RNA activation experiments of normal and cancer prostate cells. Next, to determine whether the above phenomenon exists in other tissues, we used normal and cancerous bladder cells to perform RNA activation experiments with KLK1 and p21WAF1/CIP1 as targets. We have also extended the time from transfection to detection to evaluate whether a longer incubation time can make saRNA upregulate the target genes in normal cells. Fluorescently labeled dsRNA was transfected to evaluate the transfection efficiency, and the expression of Ago2 and IPO8 necessary for RNA activation was also detected. The p21WAF1/CIP1 could be significantly upregulated by saRNA in prostate cancer cells, but not in normal prostate cells. The expression of KLK1 in bladder-derived cell lines was extremely low and could not be induced by saRNA. The p21WAF1/CIP1 was upregulated by saRNA to a higher extent in bladder cancer cells but to a lower extent in normal bladder cells. Prolonging incubation time could not make saRNA induce the expression of target genes in normal cells. Compared with tumor cells used in this study, normal cells had lower transfection efficiency or lower expression of Ago2 and IPO8. Although it has been currently found that normal cell lines in the prostate and bladder might be more difficult to be successfully induced target gene expression by exogenous saRNA than tumor cells due to low transfection efficiency or Ago2 and IPO8 expression, it is not certain that this phenomenon occurs in other types of tissue. However, researchers still need to pay attention to the transfection efficiency and/or the expression levels of Ago2 and IPO8 when conducting RNA activation experiments in normal cells.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , ARN Bicatenario , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias de la Próstata/patología , Línea Celular Tumoral
11.
Eur J Pharmacol ; 938: 175434, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462735

RESUMEN

Benign prostatic hyperplasia (BPH) is a chronic proliferative non-tumorous disease that mainly bothers males older than 50 and significantly disturbs the quality of life. Cryptotanshinone (CTS), a herbal extract, has been proven with therapeutic effects on various diseases. However, the effects and possible mechanisms of CTS in BPH have not yet been elucidated. This study aims to investigate the efficacy of CTS on the BPH-associated pathological processes and the possible mechanisms underlying it. Herein, CTS was intragastrically administrated to estradiol/testosterone (E2/T) (1:100)-induced BPH rats, and finasteride (Fi) was used as the positive control. Human benign prostatic hyperplasia epithelial cells (BPH-1) and normal human prostate stromal cells (WPMY-1) were used for the in vitro experiments. Results indicated that E2/T injection was able to induce BPH manifestation, featured with increased prostate index. Furthermore, it accelerated proliferation, epithelial-mesenchymal transition (EMT), stromal collagen deposition, and inhibited apoptosis of rat prostate. However, the administration of CTS partially reversed the changes mentioned above. The therapeutic effects of CTS on BPH were also confirmed by in vitro experiments. The efficacy of CTS on these processes might be attributed to the suppression of AR and EGFR/STAT3 axis activity. In conclusion, CTS might suppress BPH progression by modulating proliferation, apoptosis, EMT, and stromal collagen deposition via suppressing AR and EGFR/STAT3 axis.


Asunto(s)
Hiperplasia Prostática , Masculino , Ratas , Humanos , Animales , Hiperplasia Prostática/inducido químicamente , Calidad de Vida , Apoptosis , Fibrosis , Proliferación Celular , Colágeno/efectos adversos , Receptores ErbB , Factor de Transcripción STAT3/farmacología
12.
Adv Mater ; 34(51): e2207106, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36193774

RESUMEN

With the development of perovskite photodetectors, integrating photodetectors into array image sensors is the next target to pursue. The major obstacle to integrating perovskite photodiodes for dynamic imaging is the optoelectrical crosstalk among the pixels. Herein, a perovskite photodiode-blocking diode (PIN-BD) crossbar array with pixel-wise rectifying property by the vapor deposition method is presented. The PIN-BD shows a large rectification ratio of 3.3 × 102 under illumination, suppressing electrical crosstalk to as small as 8.0% in the imaging array. The fast response time of 72.8 ns allows real-time image acquisition by over 25 frames per second. The imaging sensor exhibits excellent imaging capability with a large linear dynamic range of 112 dB with 4096 gray levels and weak light sensitivity under 1.2 lux.

13.
Comput Methods Programs Biomed ; 226: 107184, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36288685

RESUMEN

PURPOSE: To propose a fast detection method for prostate cancer abnormal cells based on deep learning. The purpose of this method is to quickly and accurately locate and identify abnormal cells, so as to improve the efficiency of prostate precancerous screening and promote the application and popularization of prostate cancer cell assisted screening technology. METHOD: The method includes two stages: preliminary screening of abnormal cell images and accurate identification of abnormal cells. In the preliminary screening stage of abnormal cell images, ResNet50 model is used as the image classification network to judge whether the local area contains cell clusters. In the another stage, YoloV5 model is used as the target detection network to locate and recognize abnormal cells in the image containing cell clusters. RESULTS: This detection method aims at the pathological cell images obtained by the membrane method. And the double stage models proposed in this paper are compared with the single stage model method using only the target detection model. The results show that through the image classification network based on deep learning, we can first judge whether there are abnormal cells in the local area. If there are abnormal cells, we can further use the target detection method based on candidate box for analysis, which can reduce the reasoning time by 50% and improve the efficiency of abnormal cell detection under the condition of losing a small amount of accuracy and slightly increasing the complexity of the model. CONCLUSION: This study proposes a fast detection method for prostate cancer abnormal cells based on deep learning, which can greatly shorten the reasoning time and improve the detection speed. It is able to improve the efficiency of prostate precancerous screening.


Asunto(s)
Lesiones Precancerosas , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología
14.
Iran J Basic Med Sci ; 25(5): 629-634, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35911641

RESUMEN

Objectives: Mast cells are important immune cells that primarily localize in the interface between the host and external environment, and protect us from pathogen infection. However, they are also involved in the pathology of allergic diseases such as asthma and atopic dermatitis. A novel S phase kinase-associated protein 1 (SKP1) inhibitor 6-O-angeloylplenolin (6-OAP), was studied with its potential ability to alleviate the anti-IgE-induced inflammatory responses of primary human cultured mast cells (HCMCs) and LAD2 cell line. Materials and Methods: We isolated the HCMCs from the buffy coat of voluntary blood donors. The effects of 6-OAP on mast cell activation were evaluated by measuring degranulation, cytokine release, migration, calcium influx, and ERK phosphorylation using spectro-fluorescence assay, multiplex cytometric bead assay/ELISA, migration assay, Fluo-4 calcium flux assay, and western blot, respectively. Results: It was found that 6-OAP exerted anti-inflammatory effects on human mast cells by dose-dependently suppressing the anti-IgE-mediated degranulation and release of cytokines such as proinflammatory cytokines (IL-8 and TNF-α), growth factors (GM-CSF, VEGF, and FGF), and chemokines (CCL2 and CCL3) in HCMC and LAD2 cells. It also suppressed the migration of immature HCMCs induced by CXCL12. Moreover, the process of calcium influx and ERK phosphorylation in activated HCMC cells were inhibited by 6-OAP administration. Conclusion: Our results showed that 6-OAP inhibited anti-IgE-induced inflammatory responses of human mast cells via suppressing calcium influx and ERK phosphorylation.

15.
Sci Rep ; 12(1): 13222, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918352

RESUMEN

The emerging targeted therapies have revolutionized the treatment of advanced clear cell renal cell carcinoma (ccRCC) over the past 15 years. Nevertheless, lack of personalized treatment limits the development of effective clinical guidelines and improvement of patient prognosis. In this study, large-scale genomic profiles from ccRCC cohorts were explored for integrative analysis. A credible method was developed to identify synthetic lethality (SL) pairs and a list of 72 candidate pairs was determined, which might be utilized to selectively eliminate tumors with genetic aberrations using SL partners of specific mutations. Further analysis identified BRD4 and PRKDC as novel medical targets for patients with BAP1 mutations. After mapping these target genes to the comprehensive drug datasets, two agents (BI-2536 and PI-103) were found to have considerable therapeutic potentials in the BAP1 mutant tumors. Overall, our findings provided insight into the overview of ccRCC mutation patterns and offered novel opportunities for improving individualized cancer treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
16.
J Immunol Res ; 2022: 6833867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755168

RESUMEN

Purpose: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common urological disorder. Although ferroptosis is closely associated with inflammation, oxidative stress, and neuropathic pain, its role in CP/CPPS has not yet been elucidated. Therefore, we sought to explore the role and mechanism of ferroptosis in the prostatitis development. Methods: The experimental autoimmune prostatitis (EAP) was established through intradermal immunization of prostate extract. Iron chelator deferoxamine (DFO) and free radical scavenger edaravone (EDA) were applied to evaluate the effects of ferroptosis inhibition on oxidative stress, ferroptosis, inflammation, fibrosis, and mast cell activation in the context of CP/CPPS. Results: Increased generation of lipid peroxidation products (ROS and MDA) and decreased activities of antioxidant enzymes (SOD and CAT) suggested an aberrant oxidative stress status in EAP model. Elevated iron concentration was observed in the EAP model. Meanwhile, we discovered significant biological performances associated with ferroptosis in CP/CPPS, including the downregulation of the system Xc-/GPX4 axis and the upregulation of the ACSL4/LPCAT3 axis. EAP rats performed serious leukocyte infiltration, advanced inflammatory grade, and abnormal expression of inflammatory mediators. Abundant collagen deposition, enhanced RhoA, ROCK1, and α-SMA protein levels indicated that EAP rats were prone to suffer from stromal fibrosis compared with control group. An elevated number of degranulated mast cells and corresponding marker TPSB2 represented that mast cell-sensitized pain was amplified in the EAP model. Furthermore, reduction of NRF2/HO-1 indicated a vulnerability of EAP towards ferroptosis response. However, application of DFO and EDA had partially reversed the adverse influences mentioned above. Conclusion: We first demonstrated that ferroptosis might be a crucial factor of chronic prostatitis progression. Inhibition of ferroptosis using DFO and EDA represented a promising approach for treating prostatitis by ameliorating inflammation, fibrosis, and mast cell activation.


Asunto(s)
Enfermedades Autoinmunes , Dolor Crónico , Ferroptosis , Prostatitis , Animales , Enfermedad Crónica , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Inflamación/metabolismo , Masculino , Mastocitos/metabolismo , Dolor Pélvico/complicaciones , Dolor Pélvico/metabolismo , Prostatitis/complicaciones , Prostatitis/tratamiento farmacológico , Ratas , Quinasas Asociadas a rho/metabolismo
17.
Small ; 18(18): e2107145, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35373469

RESUMEN

Integrating highly efficient photovoltaic (PV) function into light-emitting diodes (LEDs) for multifunctional display is of great significance for compact low-power electronics, but it remains challenging. Herein, it is demonstrated that solution engineered perovskite nanocrystals (PNCs, ≈100 nm) enable efficient electroluminescence (EL) and PV performance within a single device through tailoring the dispersity and interface. It delivers the maximum brightness of 490 W sr-1  m-2 at 2.7 V and 23.2% EL external quantum efficiency, a record value for near-infrared perovskite LED, as well as 15.23% PV efficiency, among the highest value for nanocrystal perovskite solar cells. The PV-EL performance is well in line with the reciprocity relation. These all-solution-processed PV-LED devices open up viable routes to a variety of advanced applications, from touchless interactive screens to energy harvesting displays and data communication.

18.
Oxid Med Cell Longev ; 2022: 1247806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154561

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether tissue kallikrein (KLK1) can protect the prostate from inflammatory damage and the mechanism involved in it. METHODS: A total of 50 male Wistar rats were used in this study. Initially, 20 rats were sacrificed to obtain the prostate antigen to induce experimental autoimmune prostatitis (EAP), and the remaining 30 rats were randomly divided into 5 experimental groups (normal control group (NC group), NC+KLK1 group (NCK group), EAP group, EAP+KLK1 group (EAPK group), and EAP+KLK1+HOE140 group (EAPKH group); n = 6). It should be explained that KLK1 mainly exerts its biological effects through bradykinin, and HOE140 is a potent and selective bradykinin receptor B2 (BDKRB2) antagonist. EAP was induced by intradermal injection of 15 mg/ml prostate antigen and complete Freund's adjuvant on days 0, 14, and 28. KLK1 was injected via tail vein at a dose of 1.5 × 10-3 PAN U/kg once a day, and HOE140 was administered by intraperitoneal injection at 20 µg/kg once every two days. Rats were sacrificed on day 42. The RNA and protein of the rat prostate were extracted to analyze the expression differences of KLK1, as well as the inflammation-, fibrosis-, and oxidative stress-related genes. The inflammatory cell infiltration and microvessel density of the prostate were also analyzed by pathological examination. In addition, pathological analysis was performed on prostate samples from patients undergoing benign prostate hyperplasia (BPH) surgery. RESULTS: The expression of KLK1 in the prostate decreased in the EAP group as well as BPH patients with obvious inflammation. KLK1 administration significantly inhibited inflammatory cell infiltration and reduced the production of inflammatory cytokines in the EAPK group. Prostate samples from the EAP group showed increased infiltration of T cells and macrophages, as well as gland atrophy, hypoxia, fibrosis, and angiogenesis. KLK1 administration upregulated endothelial nitric oxide synthase (eNOS) expression and suppressed oxidative stress, as well as transforming growth factor ß1 (TGF-ß) signaling pathways and the proangiogenic vascular endothelial growth factor (VEGF) in the EAPK group. However, in the EAPKH group in which HOE140 blocked BDKRB2, the beneficial effects of KLK1 were all cancelled. In addition, KLK1 intervention in normal rats had no obvious side effects. CONCLUSION: The KLK1 expression is inhibited in the inflamed prostates of humans and rats. Exogenous KLK1 restored endothelial function via a BDKRB2-dependent way and then played a role in improving microcirculation and exerted anti-inflammatory, antifibrotic, and antioxidative stress effects in the rat chronic-inflamed prostate.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/tratamiento farmacológico , Células Endoteliales/metabolismo , Próstata/patología , Prostatitis/complicaciones , Prostatitis/tratamiento farmacológico , Sustancias Protectoras/administración & dosificación , Receptor de Bradiquinina B2/metabolismo , Transducción de Señal/efectos de los fármacos , Calicreínas de Tejido/administración & dosificación , Calicreínas de Tejido/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Hiperplasia/cirugía , Masculino , Persona de Mediana Edad , Prostatitis/metabolismo , Ratas , Ratas Wistar , Estudios Retrospectivos , Calicreínas de Tejido/genética
19.
ACS Appl Mater Interfaces ; 13(27): 32495-32502, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34185990

RESUMEN

Recently, the two-dimensional material Ti3C2Tx MXene has attracted interest from researchers in perovskite solar cells (PSCs) with its great advantages in terms of high transmittance, high conductivity, tunable work function, and solution processability. However, the MXene-based PSC performance has still been inferior to that of the traditional TiO2- or SnO2-based counterpart up until now. Some critical issues regarding to the MXene/perovskite interface still have not been well addressed. Herein, we used the Ti3C2Tx MXene as electron transport layer in PSCs via a room-temperature solution process followed by oxygen plasma treatment. Various characterization techniques were taken to establish the correlation between the surface properties and termination groups of MXene. We showed that oxygen plasma treatment could break parts of Ti-C bonds and generate abundant Ti-O bonds randomly distributed on MXene. The surface modification resulted in tunable work functions of MXene, as well as reduced trap states and improved electron transport close to the interface. In addition, the surface tension of MXene and corresponding perovskite morphology were thoroughly investigated by the contact angle and topography measurements. High-resolution XPS spectra indicated the Pb-O interactions between perovskite and MXene, which contributed to the device stability improvement.

20.
Oxid Med Cell Longev ; 2021: 8877540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007408

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the protective effects and mechanisms of KLK1 on aging-related prostate alterations and search clues about the application of KLK1 to the treatment of human BPH. METHODS: Thirty-six rats including 26 male wild-type SD rats and 10 transgenic rats were fed to 3- or 18-month-old and divided into three groups: young WTR (yWTR) as the control (n = 16), aged WTR (aWTR) (n = 10), and aged TGR (aTGR) (n = 10). The prostates of the three groups of rats (10 rats per group) were harvested to evaluate the levels of KLK1 expression, oxidative stress, fibrosis, and involved signaling pathways, such as NO/cGMP, COX-2/PTGIS/cAMP, and TGF-ß1/RhoA/ROCK1, via quantitative PCR, Western blot, histological examinations, and ELISA. Moreover, the remaining 6 yWTRs were sacrificed to obtain primary prostate fibroblast and aortic endothelial cells, and a coculture system was built with the cells for the verification of above signaling pathways in vitro. And the direct effects of bradykinin on prostate cells were detected by MTT experiment. Prostate specimens of 47 patients (age from 48 to 92 years) undergoing BPH surgery were collected after approval. Histological examinations and KLK1 IHC were preformed to analyze the relationship between KLK1 expression and age and prostate fibrosis. RESULTS: The human KLK1 gene only existed and was expressed in aTGR. The prostate of young rats expressed more KLK1 than the aged and the expression of KLK1 in prostate decreased with age in humans (r = -0.347, P = 0.018). Compared to the aWTR group, the yWTR and aTGR groups showed milder fibrosis, less oxidative stress, upregulated NO/cGMP, and COX-2/PTGIS/cAMP signaling pathways and inhibited TGF-ß1/RhoA/ROCK1 signaling pathway. In the coculture system, KLK1 suppressed TGF-ß1-mediated fibroblast-to-myofibroblast transdifferentiation via cleaving LMWK to produce the BK which upregulate eNOS expression and NO production in endothelial cells. BK not only slightly stimulated the proliferation ability of prostatic stromal cells but also upregulated iNOS and inhibited TGF-ß1 expression in them. CONCLUSION: KLK1 protects prostate from oxidative stress and fibrosis via amplified NO/cGMP signal in aged rats. The decrease of KLK1 expression with aging is laying the groundwork for the application of KLK1 to the treatment of human BPH. The current experimental data showed that the side effects of KLK1 on the prostate cell were not obvious.


Asunto(s)
Antioxidantes/uso terapéutico , Neoplasias de la Próstata/fisiopatología , Calicreínas de Tejido/metabolismo , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...