Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
1.
J Org Chem ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728220

RESUMEN

An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.

2.
Environ Sci Technol ; 58(20): 8631-8642, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728100

RESUMEN

The global trade of plastic waste has raised environmental concerns, especially regarding pollution in waste-importing countries. However, the overall environmental contribution remains unclear due to uncertain treatment shares between handling plastic waste abroad and domestically. Here, we conduct a life cycle assessment of global plastic waste trade in 2022 across 18 countries and six plastic waste types, alongside three "nontrade" counterfactual scenarios. By considering the required cycling rate, which balances importers' costs and recycling revenues, we find that the trade resulted in lower environmental impacts than treating domestically with the average treatment mix. The trade scenario alone reduced climate change impact by 2.85 million tonnes of CO2 equivalent and mitigated damages to ecosystem quality, human health, and resource availability by 12 species-years, 6200 disability-adjusted life years (DALYs), and 1.4 billion United States dollars (USD in 2013), respectively. These results underscore the significance of recognizing plastic waste trade as a pivotal factor in regulating global secondary plastic production when formulating a global plastics treaty.


Asunto(s)
Plásticos , Reciclaje , Comercio , Humanos , Cambio Climático , Ambiente
3.
Small ; : e2401335, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693088

RESUMEN

Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.

4.
Int J Biol Macromol ; : 132066, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705323

RESUMEN

A comprehensive multiscale analysis was conducted to explore the effects of different ratios of these materials on its properties. The results show that KC played a crucial role in controlling solution viscosity and gel and sol temperatures. The dissolution time at high water temperatures primarily decreased with an increase in SA content. Higher KC and CS content increased tensile strength (TS) and elongation at break (ε), while also exhibiting better thermal stability. Water vapor transmission (WVT) and permeability (PV) initially decreased, then increased with the increase of SA and CS contents. Finally, an SA:KC:CS ratio of 1:3:2 showed optimal comprehensive properties, with a dissolution time of about 60.0 ± 3.8 s, TS of 23.80 ± 0.29 MPa, ε of 18.61 ± 0.34 %, WVT of 21.74 ± 0.62 g/m2·24h, and PV of 5.39 ± 0.17 meq/kg. Meanwhile, the SA:KC:CS edible food packaging only introduced minimal effects on food after dissolution, and the total bacterial count met regulatory standards.

5.
Nucleic Acids Res ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709881

RESUMEN

Inferring the developmental potential of single cells from scRNA-Seq data and reconstructing the pseudo-temporal path of cell development are fundamental but challenging tasks in single-cell analysis. Although single-cell transcriptional diversity (SCTD) measured by the number of expressed genes per cell has been widely used as a hallmark of developmental potential, it may lead to incorrect estimation of differentiation states in some cases where gene expression does not decrease monotonously during the development process. In this study, we propose a novel metric called single-cell transcriptional complexity (SCTC), which draws on insights from the economic complexity theory and takes into account the sophisticated structure information of scRNA-Seq count matrix. We show that SCTC characterizes developmental potential more accurately than SCTD, especially in the early stages of development where cells typically have lower diversity but higher complexity than those in the later stages. Based on the SCTC, we provide an unsupervised method for accurate, robust, and transferable inference of single-cell pseudotime. Our findings suggest that the complexity emerging from the interplay between cells and genes determines the developmental potential, providing new insights into the understanding of biological development from the perspective of complexity theory.

6.
Poult Sci ; 103(7): 103766, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38759567

RESUMEN

Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.

7.
Org Lett ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761124

RESUMEN

We report a novel organic photoredox catalysis to achieve unprecedented γ-(hetero)aryl/alkenyl-δ-silyl aliphatic amines via silyl-mediated distal (hetero)aryl/alkenyl migration of aromatic/alkenyl amines bearing unactivated alkenes with hydrosilanes. This protocol features mild and metal-free reaction conditions, high atom economy, excellent selectivity, and functional group compatibility. Mechanistic studies suggest that silylation and (hetero)aryl/alkenylation involve photoredox hydrogen atom transfer catalysis and subsequent 1,4-migration of a remote (hetero)aryl/alkenyl group from nitrogen to carbon.

8.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745965

RESUMEN

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

9.
World J Hepatol ; 16(3): 344-352, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577527

RESUMEN

Succinylation is a highly conserved post-translational modification that is processed via enzymatic and non-enzymatic mechanisms. Succinylation exhibits strong effects on protein stability, enzyme activity, and transcriptional regulation. Protein succinylation is extensively present in the liver, and increasing evidence has demonstrated that succinylation is closely related to hepatic metabolism. For instance, histone acetyltransferase 1 promotes liver glycolysis, and the sirtuin 5-induced desuccinylation is involved in the regulation of the hepatic urea cycle and lipid metabolism. Therefore, the effects of succinylation on hepatic glucose, amino acid, and lipid metabolism under the action of various enzymes will be discussed in this work. In addition, how succinylases regulate the progression of different liver diseases will be reviewed, including the desuccinylation activity of sirtuin 7, which is closely associated with fatty liver disease and hepatitis, and the actions of lysine acetyltransferase 2A and histone acetyltransferase 1 that act as succinyltransferases to regulate the succinylation of target genes that influence the development of hepatocellular carcinoma. In view of the diversity and significance of protein succinylation, targeting the succinylation pathway may serve as an attractive direction for the treatment of liver diseases.

10.
Sci Rep ; 14(1): 7672, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561377

RESUMEN

Lipopolysaccharide (LPS) is known to elicit a robust immune response. This study aimed to investigate the impact of LPS on the transcriptome of human nasal epithelial cells (HNEpC). HNEpC were cultured and stimulated with LPS (1 µg/mL) or an equivalent amount of normal culture medium. Subsequently, total RNA was extracted, purified, and sequenced using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, followed by Ingenuity Pathway Analysis (IPA) to identify molecular pathways influenced by LPS exposure on HNEpC. Validation of key genes was performed using quantitative real-time PCR (qRT-PCR). A total of 97 DEGs, comprising 48 up-regulated genes and 49 down-regulated genes, were identified. Results from functional enrichment analysis, PPI, and IPA indicated that DEGs were predominantly enriched in chemokine-related signaling pathways. Subsequent qRT-PCR validation demonstrated significant upregulation of key genes in these pathways in LPS-treated HNEpC compared to control cells. In conclusion, LPS intervention profoundly altered the transcriptome of HNEpC, potentially exacerbating inflammatory responses through the activation of chemokine-related signaling pathways.


Asunto(s)
Perfilación de la Expresión Génica , Lipopolisacáridos , Humanos , Perfilación de la Expresión Génica/métodos , Lipopolisacáridos/farmacología , Transcriptoma , Transducción de Señal/genética , Células Epiteliales , Quimiocinas/genética , Biología Computacional/métodos
11.
Clin Exp Allergy ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639267

RESUMEN

BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.

13.
Small ; : e2400906, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593313

RESUMEN

Marangoni actuators that are propelled by surface tension gradients hold significant potential in small-scale swimming robots. Nevertheless, the release of "fuel" for conventional chemical Marangoni actuators is not easily controllable, and the single swimming function also limits application areas. Constructing controllable Marangoni robots with multifunctions is still a huge challenge. Herein, inspired by water striders, electricity-driven strategies are proposed for a multifunctional swimming Marangoni robot (MSMR), which is fabricated by super-aligned carbon nanotube (SACNT) and polyimide (PI) composite. The MSMR consists of a Marangoni actuator and air-ambient actuators. Owing to the temperature gradient generated by the electrical stimulation on the water surface, the Marangoni actuators can swim controllably with linear, turning, and rotary motions, mimicking the walking motion of water striders. In addition, the Marangoni actuators can also be driven by light. Importantly, the air-ambient actuators fabricated by SACNT/PI bilayer structures demonstrate the function of grasping objects on the water surface when electrically Joule-heated, mimicking the predation behavior of water striders. With the synergistic effect of the Marangoni actuator and air-ambient actuators, the MSMR can navigate mazes with tunnels and grasp objects. This research will provide a new inspiration for smart actuators and swimming robots.

14.
Poult Sci ; 103(6): 103663, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603930

RESUMEN

The enclosed multistory poultry housing is a type of poultry enclosure widely used in industrial caged chicken breeding. Accurate identification and detection of the comb and eyes of caged chickens in poultry farms using this type of enclosure can enhance managers' understanding of the health of caged chickens. However, the accuracy of image detection of caged chickens will be affected by the enclosure's entrance, which will reduce the precision. Therefore, this paper proposes a cage-gate removal algorithm based on big data and deep learning Cyclic Consistent Migration Neural Network (CCMNN). The method achieves automatic elimination and restoration of some key information in the image through the CCMNN network. The Structural Similarity Index Measure (SSIM) between the recovered and original images on the test set is 91.14%. Peak signal-to-noise ratio (PSNR) is 25.34dB. To verify the practicability of the proposed method, the performance of the target detection algorithm is analyzed both before and after applying the CCMNN network in detecting the combs and eyes of caged chickens. Different YOLOv8 detection algorithms, including YOLOv8s, YOLOv8n, YOLOv8m, and YOLOv8x, were used to verify the algorithm proposed in this paper. The experimental results demonstrate that compared to images without CCMNN processing, the precision of comb detection of caged chickens is improved by 11, 11.3, 12.8, and 10.2%. Similarly, the precision of eye detection for caged chickens is improved by 2.4, 10.2, 6.8, and 9%. Therefore, more complete outline images of caged chickens can be obtained using this algorithm and the precision in detecting the comb and eyes of caged chickens can be enhanced. These advancements in the algorithm offer valuable insights for future poultry researchers aiming to deploy enhanced detection equipment, thereby contributing to the accurate assessment of poultry production and farm conditions.

15.
J Ethnopharmacol ; 330: 118179, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY: This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS: With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS: This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS: The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Animales , Medicina Tradicional China/métodos , Fitoterapia
16.
J Chem Theory Comput ; 20(9): 3462-3472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38671391

RESUMEN

Adaptive quantum mechanics/molecular mechanics (QM/MM) reclassifies on-the-fly a molecule or molecular fragment as QM or MM during dynamics simulations without abrupt changes in the energy or forces. Notably, the permuted adaptive-partitioning (PAP) algorithms have been applied to simulate a hydrated proton, with a mobile QM zone anchored at a pseudoatom called a proton indicator. The position of the proton indicator approximates the location of the delocalized excess proton, yielding a smooth trajectory of the proton diffusing via the Grotthuss mechanism in aqueous solutions. The mobile QM zone, which has been taken to be a sphere with a preset radius, follows the proton wherever it goes. Although the simulations are successful, the use of a spherical QM zone has one disadvantage: A large preset radius must be utilized to minimize the chance of missing water molecules that are important to proton translocation. A large radius leads to a large QM zone, which is computationally expensive. In this work, we report a new way to set up the QM zone, where one includes only the water molecules important to proton transfer. The importance of a given water molecule is quantified by its "weight" that depends on its relation to the reaction path of proton transfer. The weight varies smoothly, ensuring that a water molecule gradually appears in or disappears from the QM zone without abrupt changes, as required by the PAP method. Consequently, the shape of the QM zone evolves on-the-fly, keeping the QM zone as small as possible and as large as necessary. Test simulations demonstrate that the new algorithm significantly improves the computation efficiency while maintaining the proper descriptions of proton transfer in bulk water.

17.
Front Microbiol ; 15: 1371388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638913

RESUMEN

The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.

18.
World J Clin Cases ; 12(10): 1793-1798, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38660069

RESUMEN

BACKGROUND: Whether hyperbaric oxygen therapy (HBOT) can cause paradoxical herniation is still unclear. CASE SUMMARY: A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradually regained consciousness after surgery. HBOT was administered 22 d after surgery due to speech impairment. Paradoxical herniation appeared on the second day after treatment, and the patient's condition worsened after receiving mannitol treatment at the rehabilitation hospital. After timely skull repair, the paradoxical herniation was resolved, and the patient regained consciousness and had a good recovery as observed at the follow-up visit. CONCLUSION: Paradoxical herniation is rare and may be caused by HBOT. However, the underlying mechanism is unknown, and the understanding of this phenomenon is insufficient. The use of mannitol may worsen this condition. Timely skull repair can treat paradoxical herniation and prevent serious complications.

19.
Life Sci Space Res (Amst) ; 41: 1-17, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670635

RESUMEN

Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.


Asunto(s)
Medicina Regenerativa , Células Madre , Ingeniería de Tejidos , Ingravidez , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Humanos , Células Madre/citología , Células Madre/fisiología , Diferenciación Celular , Animales , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo de Célula/métodos
20.
Tree Physiol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602710

RESUMEN

Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb. with distinct life-history traits (i.e., a deciduous broadleaf species vs. an evergreen coniferous species) were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem, and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...