Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409793, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923266

RESUMEN

Due to the challenge of cleaving O-O bonds at single Co sites, mononuclear Co complexes typically show poor selectivity for the four-electron (4e-) oxygen reduction reaction (ORR). Herein, we report on selective 4e- ORR catalyzed by a Co porphyrin with a hanged ZnII ion. Inspired by Cu/Zn-superoxide dismutase, we designed and synthesized 1-CoZn with a hanging ZnII at the second sphere of a Co porphyrin. Complex 1-CoZn is much more effective than its Zn-lacking analogues to catalyze the 4e- ORR in neutral aqueous solutions, giving an electron number of 3.91 per O2 reduction. With spectroscopic studies, the hanging ZnII was demonstrated to be able to facilitate the electron transfer from CoII to O2, through an electronic "pull effect", to give CoIII-superoxo. Theoretical studies further suggested that this "pull effect" plays crucial roles in assisting O-O bond cleavage. This work is significant to present a new strategy of hanging a ZnII to improve O2 activation and O-O bond cleavage.

2.
Adv Sci (Weinh) ; : e2401137, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868913

RESUMEN

Due to its decade-long progression, colorectal cancer (CRC) is most suitable for population screening to achieve a significant reduction in its incidence and mortality. DNA methylation has emerged as a potential marker for the early detection of CRC. However, the current mainstream methylation detection method represented by bisulfite conversion has issues such as tedious operation, DNA damage, and unsatisfactory sensitivity. Herein, a new high-performance CRC screening tool based on the promising specific terminal-mediated polymerase chain reaction (STEM-PCR) strategy is developed. CRC-related methylation-specific candidate CpG sites are first prescreened through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases using self-developed bioinformatics. Next, 9 homebrew colorectal cancer DNA methylated STEM‒PCR assays (ColoC-mSTEM) with high sensitivity (0.1%) and high specificity are established to identify candidate sites. The clinical diagnostic performance of these selected methylation sites is confirmed and validated by a case-control study. The optimized diagnostic model has an overall sensitivity of 94.8% and a specificity of 95.0% for detecting early-stage CRC. Taken together, ColoC-mSTEM, based on a single methylation-specific site, is a promising diagnostic approach for the early detection of CRC which is perfectly suitable for the screening needs of CRC in primary healthcare institutions.

3.
Environ Int ; 189: 108811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870579

RESUMEN

BACKGROUND: China produces and consumes a large amount of neonicotinoids. A non-negligible exposure to neonicotinoids might occur for Chinese pregnant women, but relevant data remain limited. OBJECTIVE: To investigate the exposure to neonicotinoids by urinary biomonitoring in pregnant women from Wenzhou City, East China. METHODS: We selected 432 pregnant women in Wenzhou City in 2022. A total of eight parent neonicotinoids and four metabolites were determined in single spot urine by liquid chromatography coupled to mass spectrometry. Basic characteristics, physical activity, pre-pregnant body mass index, and intake of drinking water and food were investigated by the questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on human safety thresholds derived from different health endpoints. RESULTS: Neonicotinoids and their metabolites in urine had a detection frequency between 0 % and 80.1 %. At least one neonicotinoid or metabolite was detected in 93.5 % of urine samples. Except for clothianidin (51.2 %) and N-desmethyl-acetamiprid (80.1 %), the detection frequencies of other neonicotinoids and metabolites ranged from 0 % to 43.8 %. The summed concentrations of all neonicotinoids and their metabolites ranged from < LOD to 222.83 µg/g creatinine with the median concentration of 2.58 µg/g creatinine. Maternal age, educational level, occupation, household income, screen time, and pre-pregnant body mass index were associated with detection frequencies or concentrations of neonicotinoids and their metabolites. Pregnant women with higher consumption frequencies of wheat, fresh vegetable, shellfish, fresh milk, and powdered milk had higher detection frequencies of neonicotinoids and their metabolites. Both HQ and HI were less than one. CONCLUSIONS: Overall, pregnant women in Wenzhou City showed a notable frequency of exposure to at least one neonicotinoid, although the exposure frequency for each specific neonicotinoid was generally low. Several food items derived from plants and animals were potential exposure sources. A low health risk was found based on current safety thresholds.


Asunto(s)
Monitoreo Biológico , Neonicotinoides , Humanos , Femenino , China , Embarazo , Neonicotinoides/orina , Neonicotinoides/análisis , Adulto , Adulto Joven , Insecticidas/orina , Insecticidas/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Ciudades
4.
J Am Chem Soc ; 146(23): 15887-15896, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38825776

RESUMEN

Oxide thin films grown on metal surfaces have wide applications in catalysis and beyond owing to their unique surface structures compared to their bulk counterparts. Despite extensive studies, the atomic structures of copper surface oxides on Cu(111), commonly referred to as "44" and "29", have remained elusive. In this work, we demonstrated an approach for the structural determination of oxide surfaces using element-specific scanning tunneling microscopy (STM) imaging enhanced by functionalized tips. This approach enabled us to resolve the atomic structures of "44" and "29" surface oxides, which were further corroborated by noncontact atomic force microscopy (nc-AFM) measurements and Monte Carlo (MC) simulations. The stoichiometry of the "44" and "29" frameworks was identified as Cu23O16 and Cu16O11, respectively. Contrary to the conventional hypothesis, we observed ordered Cu vacancies within the "44" structure manifesting as peanut-shaped cavities in the hexagonal lattice. Similarly, a combination of Cu and O vacancies within the "29" structure leads to bean-shaped cavities within the pentagonal lattice. Our study has thus resolved the decades-long controversy on the atomic structures of "44" and "29" surface oxides, advancing our understanding of copper oxidation processes and introducing a robust framework for the analysis of complex oxide surfaces.

5.
Pharmacol Res ; 203: 107172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583685

RESUMEN

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Asunto(s)
Acuaporinas , Enfermedad de Crohn , Vía de Señalización Hippo , Lisofosfolípidos , Macrófagos , Animales , Humanos , Masculino , Ratones , Acuaporinas/metabolismo , Acuaporinas/genética , Acuaporinas/antagonistas & inhibidores , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Citocinas/metabolismo , Vía de Señalización Hippo/efectos de los fármacos , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
6.
Nat Commun ; 15(1): 3030, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589464

RESUMEN

On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials.

7.
ACS Appl Mater Interfaces ; 16(15): 19379-19390, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568698

RESUMEN

Photodriven chiral catalysis is the combination of photocatalysis and chiral catalysis and is considered one of the cleanest and most efficient methods for the synthesis of chiral compounds or drugs. Furthermore, due to the potential metal contamination associated with most metal-based catalysts, metal-free chiral photocatalysts are ideal candidates. In this work, we demonstrate that metal-free chiral carbon dots (CDs) exhibit size-dependent enantioselective photocatalytic activity. Using serine as the raw material, chiral CDs with well-defined structures and average sizes of 2.22, 3.01, 3.70, 4.77, and 7.21 nm were synthesized using the electrochemical method. These chiral CDs possess size-dependent band gaps and exhibit photoresponsive enantioselective catalytic activity toward the oxidation of dihydroxyphenylalanine (DOPA). Under light-assisted conditions, chiral CDs (L72, 500 µg/mL) exhibit high selectivity (selectivity factor: 2.07) and maintain a certain level of catalytic activity (1.34 µM/min) even at a low temperature of 5 °C. The high catalytic activity of the chiral CDs arises from their photoelectrons reducing O2 to generate O2-, as the active oxygen species for DOPA oxidation. The high enantioselectivity of the chiral CDs is attributed to their differential adsorption capabilities toward DOPA enantiomers. This study provides a new approach for designing metal-free chiral photocatalysts with high enantioselectivity.

8.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458635

RESUMEN

BACKGROUND: Programmed death 1 (PD-1) inhibitor demonstrated durable antitumor activity in advanced esophageal squamous cell carcinoma (ESCC), but the clinical benefit of perioperative immunotherapy in ESCC remains unclear. This study evaluated the efficacy and safety of neoadjuvant chemoradiotherapy (nCRT) combined with the PD-1 inhibitor toripalimab in patients with resectable ESCC. METHODS: From July 2020 to July 2022, 21 patients with histopathologically confirmed thoracic ESCC and clinical staged as cT1-4aN1-2M0/cT3-4aN0M0 were enrolled. Eligible patients received radiotherapy (23 fractions of 1.8 Gy, 5 fractions a week) with concurrent chemotherapy of paclitaxel/cisplatin (paclitaxel 45 mg/m2 and cisplatin 25 mg/m2) on days 1, 8, 15, 22, 29 and two cycles of toripalimab 240 mg every 3 weeks after nCRT for neoadjuvant therapy before surgery, four cycles of toripalimab 240 mg every 3 weeks for adjuvant therapy after surgery. The primary endpoint was the major pathological response (MPR) rate. The secondary endpoints were safety and survival outcomes. RESULTS: A total of 21 patients were included, of whom 20 patients underwent surgery, 1 patient refused surgery and another patient was confirmed adenocarcinoma after surgery. The MPR and pathological complete response (pCR) rates were 78.9% (15/19) and 47.4% (9/19) for surgery ESCC patients. 21 patients (100.0%) had any-grade treatment-related adverse events, with the most common being lymphopenia (100.0%), leukopenia (85.7%), neutropenia (52.4%). 14 patients (66.7%) had adverse events of grade 3 with the most common being lymphopenia (66.7%). The maximum standardized uptake value and total lesion glycolysis of positron emission tomography/CT after neoadjuvant therapy well predicted the pathological response. The peripheral CD4+%, CD3+HLA-DR+/CD3+%, CD8+HLA-DR+/CD8+%, and IL-6 were significant differences between pCR and non-pCR groups at different times during neoadjuvant therapy. Three patients had tumor relapse and patients with MPR have longer disease-free survival than non-MPR patients. CONCLUSIONS: nCRT combined with perioperative toripalimab is effective and safe for locally advanced resectable ESCC. Long-term survival outcomes remain to be determined. TRIAL REGISTRATION NUMBER: NCT04437212.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Linfopenia , Trombocitopenia , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Terapia Neoadyuvante , Carcinoma de Células Escamosas/tratamiento farmacológico , Resultado del Tratamiento , Recurrencia Local de Neoplasia , Paclitaxel , Antígenos HLA-DR , Células Epiteliales/patología
9.
Cell Oncol (Dordr) ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386232

RESUMEN

PURPOSE: Growth differentiating Factor 15 (GDF15) is linked to several cancers, but its effect on chemoresistance in colorectal cancer (CRC) remains unclear. Here, we investigated the role of GDF15 in the chemotherapeutic response of CRC patients to oxaliplatin (L-OHP). METHODS: GDF15 levels in serum and tumour tissues were detected in CRC patients have received L-OHP-based neoadjuvant chemotherapy. The effects of GDF15 neutralization or GDF15 knockdown on cell proliferation, apoptosis and intracellular reactive oxygen species (ROS) levels were analysed in vitro and in vivo. Co-immunoprecipitation (Co-IP), Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the interaction between GDF15 and Nrf2. RESULTS: In this study, we found that GDF15 alleviates oxidative stress to induce chemoresistance of L-OHP in CRC. Mechanically, GDF15 posttranscriptionally regulates protein stability of Nrf2 through the canonical PI3K/AKT/GSK3ß signaling pathway, and in turn, Nrf2 acts as a transcription factor to regulate GDF15 expression to form a positive feedback loop, resulting in the maintenance of redox homeostasis balance in CRC. Furthermore, a positive correlation between GDF15 and Nrf2 was observed in clinical CRC samples, and simultaneous overexpression of both GDF15 and Nrf2 was associated with poor prognosis in CRC patients treated with L-OHP. Simultaneous inhibition of both GDF15 and Nrf2 significantly increases the response to L-OHP in an L-OHP-resistant colorectal cancer cells-derived mouse xenograft model. CONCLUSION: This study identified a novel GDF15-Nrf2 positive feedback loop that drives L-OHP resistance and suggested that the GDF15-Nrf2 axis is a potential therapeutic target for the treatment of L-OHP-resistant CRC.

10.
Angew Chem Int Ed Engl ; 63(7): e202313034, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097503

RESUMEN

Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe-Nx ) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3 C@CNS). The induction of this twisted configuration within FeNS/Fe3 C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3 C@CNS exhibits a half-wave potential (E1/2 ) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3 C nanoparticles are coexistent and play as active centers within FeNS/Fe3 C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3 C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.

11.
J Phys Chem Lett ; 14(50): 11286-11291, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38063416

RESUMEN

Thermal stimulus has been considered as a promising strategy for controlling on-surface reactions, allowing the formation of diverse products on metal substrates. Here, we successfully achieve hierarchical dehydrogenation reactions of amino groups on a Cu(100) surface. By carefully adjusting the experimental parameters, we synthesize large-scale and low-defect density surface metal-organic frameworks on copper surfaces. Our work sheds light on a controllable route for the synthesis of high-quality metal-organic coordination supramolecular structures via on-surface chemistry.

12.
ACS Nano ; 17(22): 22691-22700, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37926947

RESUMEN

High-entropy alloys (HEAs) are significantly promising candidates for heterogeneous catalysis, yet the controllable synthesis of ultrafine HEA nanoparticles (NPs) remains a formidable challenge due to severe thermal sintering during the high-temperature fabrication process. Herein, we report a sulfur-stabilizing strategy to construct ultrafine HEA NPs with an average diameter of 4.02 nm supported on sulfur-modified Ti3C2Tx (S-Ti3C2Tx) MXene, on which the strong interfacial metal-sulfur interactions between HEA NPs and the S-Ti3C2Tx supports significantly increase the interfacial adhesion strength, thus greatly suppressing nanoparticle sintering by retarding both particle migration and metal atom diffusion. The representative quinary PtPdCuNiCo HEA-S-Ti3C2Tx exhibits excellent catalytic performance toward alkaline ethanol oxidation reaction (EOR) with an ultrahigh mass activity of 7.03 A mgPt+Pd-1, which is 4.34 and 5.17 times higher than those of the commercial Pt/C and Pd/C catalysts, respectively. In situ attenuated total reflection-infrared spectroscopy studies reveal that the high intrinsic catalytic activity for the EOR can be ascribed to the synergy of different catalytically active sites of HEA NPs and the well-designed interfacial metal-sulfur interactions.

13.
J Phys Chem Lett ; 14(43): 9584-9589, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37862333

RESUMEN

Two-dimensional (2D) tessellation of organic species acquired increased interest recently because of their potential applications in physics, biology, and chemistry. Herein, we successfully synthesized the chiral distorted Kagome lattice p3 (333) with bicomponent precursors on Ag(111). Scanning tunneling microscopy and density functional calculation studies reveal that the networks are formed by multiple intermolecular hydrogen bonds. The network structures can be rationally tuned by adjusting the stoichiometric ratio of the reaction precursors. Our study provides new strategies to synthesize complex low-dimensional nanostructures on metal surfaces.

14.
Adv Mater ; 35(42): e2305659, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37620729

RESUMEN

Oxygen evolution reaction (OER) plays a key role in proton exchange membrane water electrolysis (PEMWE), yet the electrocatalysts still suffer from the disadvantages of low activity and poor stability in acidic conditions. Here, a new class of CdRu2 IrOx nanoframes with distorted structure for acidic OER is successfully fabricated. Impressively, CdRu2 IrOx displays an ultralow overpotential of 189 mV and an ultralong stability of 1500 h at 10 mA cm⁻2 toward OER in 0.5 M H2 SO4 . Moreover, a PEMWE using the distorted CdRu2 IrOx can be steadily operated at 0.1 A cm⁻2 for 90 h. Microstructural analyses and X-ray absorption spectroscopy (XAS) demonstrate that the synergy between Ru and Ir in CdRu2 IrOx induces the distortion of Ru-O, Ir-O, and Ru-M (M = Ru, Ir) bonds. In situ XAS indicates that the applied potential leads to the deformation octahedral structure of RuOx /IrOx and the formation of stable Ru5+ species for OER. Theoretical calculations also reveal that the distorted structures can reduce the energy barrier of rate-limiting step during OER. This work provides an efficient strategy for constructing structural distortion to achieve significant enhancement on the activity and stability of OER catalysts.

15.
Angew Chem Int Ed Engl ; 62(39): e202308670, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37551119

RESUMEN

Electrochemical water splitting is a promising approach for producing sustainable and clean hydrogen. Typically, high valence state sites are favorable for oxidation evolution reaction (OER), while low valence states can facilitate hydrogen evolution reaction (HER). However, here we proposed a high valence state of Co3+ in Ni9.5 Co0.5 -S-FeOx hybrid as the favorable center for efficient and stable HER, while structural analogues with low chemical states showed much worse performance. As a result, the Ni9.5 Co0.5 -S-FeOx catalyst could drive alkaline HER with an ultra-low overpotential of 22 mV for 10 mA cm-2 , and 175 mV for 1000 mA cm-2 at the industrial temperature of 60 °C, with an excellent stability over 300 h. Moreover, this material could work for both OER and HER, with a low cell voltage being 1.730 V to achieve 1000 mA cm-2 for overall water splitting at 60 °C. X-ray absorption spectroscopy (XAS) clearly identified the high valence Co3+ sites, while in situ XAS during HER and theoretical calculations revealed the favorable electron capture at Co3+ and suitable H adsorption/desorption energy around Co3+ , which could accelerate the HER. The understanding of high valence states to drive reductive reactions may pave the way for the rational design of energy-related catalysts.

16.
Front Cell Infect Microbiol ; 13: 1140757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124046

RESUMEN

The fungal microbiota is an important component of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation. However, how fungi regulate inflammatory bowel disease (IBD) is poorly understood. This study found that intestinal fungi regulate immune responses in IBD. Antibiotic-mediated depletion of fungi facilitated the development of IBD. Fungi greatly enhanced oxidative phosphorylation (OXPHOS) by enhancing glutaminolysis. Mechanistically, we found that fungi could activate the dectin-1-Syk- NF-κB signaling pathway to promote the expression of key enzymes and transporters involved in glutaminolysis. In summary, our findings reveal that fungal interactions in the human gut could be a promising therapeutic target for IBD.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T CD4-Positivos , Disbiosis/microbiología , Hongos , Enfermedades Inflamatorias del Intestino/microbiología , Mamíferos
17.
J Am Chem Soc ; 145(9): 5353-5362, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36853085

RESUMEN

Photocatalysis provides an eco-friendly route for the hydrogenation of aromatic carbonyls to O-free aromatics, which is an important refining process in the chemical industry that is generally carried out under high pressure of hydrogen at elevated temperatures. However, aromatic carbonyls are often only partially hydrogenated to alcohols, which readily desorbs and are hardly further deoxygenated under ambient conditions. Here, we show that by constructing an oxide surface over the Pd cocatalyst supported on graphitic carbon nitride, an alternative hydrogenation path of aromatic carbonyls becomes available via a step-wise acetalization and hydrogenation, thus allowing efficient and selective production of O-free aromatics. The PdO surface allows for optimum adsorption of reactants and intermediates and rapid abstraction of hydrogen from the alcohol donor, favoring fast acetalization of the carbonyls and their consecutive hydrogenation to O-free hydrocarbons. The photocatalytic hydrogenation of benzaldehyde into toluene shows a high selectivity of >90% and a quantum efficiency of ∼10.2% under 410 nm irradiation. By adding trace amounts of HCl to the reaction solution, the PdO surface remains stable and active for long-term operation at high concentrations, offering perspective for practical applications.

18.
Clin Lung Cancer ; 24(3): e141-e151, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36639280

RESUMEN

BACKGROUND: The standard surgical procedure for ≤ 2 cm non-small cell lung cancer (NSCLC), including the number of lymph nodes sampled (nLN) and surgical modality, remains controversial. This study was designed to determine the optimal cohort in which sublobectomy could be an alternative to lobectomy. MATERIALS (OR PATIENTS) AND METHODS: Patients from 1998 to 2017 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. The optimal cutoff value of nLN was identified using a restrictive cubic spline graph (RCS). Kaplan-Meier analysis was used to determine cancer-specific survival (CSS). The COX proportional hazard regression model was used to identify the influence of clinical and demographic variables on survival, and propensity score matching (PSM) was used to balance differences in baseline characteristics. Finally, we used an external cohort from a single-center medical institution to verify the conclusions drawn from the SEER database. RESULTS: A total of 6150 patients were included. The sublobectomy subgroup included segmentectomy (308, 5.0%) and wedge resection (1611, 26.2%). The cutoff value for nLN was 7. In the nLN ≥7 subgroup of the PSM cohort, the CSS of segmentectomy and wedge resection was close to that of the lobectomy subgroup (P = .12), whereas in the nLN <7 subgroup, the CSS of the lobectomy subgroup was significantly higher than that of the sublobectomy with P < .001). Surgical methods, nLN, age, sex, and differentiated grade were independent predictors of CSS. External cohort validation: A total of 1106 patients from the Affiliated Jinhua Hospital of Zhejiang University School of Medicine between 2013 and 2020 were included. The grouping criteria were consistent with the SEER database. In the nLN≥7 subgroup, sublobectomy had a survival outcome similar to that of lobectomy (P = .81). CONCLUSION: Sublobectomy and nLN < 7 were strongly associated with poorer CSS for early-stage NSCLC. On the premise of nLN ≥ 7, sublobectomy could provide similar survival outcomes to lobectomy for these patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Neumonectomía/métodos , Estadificación de Neoplasias , Carcinoma Pulmonar de Células Pequeñas/patología , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patología
19.
PLoS One ; 18(1): e0280474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36652446

RESUMEN

OBJECTIVE: The aim of the current study was to explore the association between age and outcomes in breast cancer. METHODS: Patients during 2010-2015 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Overall survival (OS) and breast cancer-specific death (BCSD) were taken as endpoints. The restrict cubic spline graph (RCS) was used to explore the relationship between age and outcomes in patients, and the cumulative incidence of BCSD and non-BCSD was calculated using the Gray method. Age-specific gene expression profiles were studied using RNA sequence data from the Cancer Genome Atlas (TCGA) database to explore whether there were young age-related gene or gene sets. RESULTS: A total of 142,755 patients with breast cancer were included. The hazard ratio (HR) of OS for Patients with stage I-III breast cancer was roughly stable before 53 years old and increased significantly after that, and the HR of BCSD for these patients showed a U-shaped distribution when plotted against age, with patients younger than 50 years and patients older than 70 years experiencing the worst survival. Further stratified analysis according to molecular subtype revealed that the U-shaped distribution of the HR of BCSD with was only found in the Hormone receptor-positive/HER2-negative (HoR+/HER2-) subgroup. The cumulative incidence plots showed that young age was associated with worse BCSD in the breast cancer patients with stage I-III and HoR+/HER2- subgroup. In stage IV breast cancer, there was a linearity of the relationship between poor OS and increasing age. We failed to find any differentially expressed age-specific genes between 20-40 years and 41-60 years groups in 258 patients with stage I-III and HoR+/HER2- subtype. CONCLUSION: Young age could predict worse BCSD of patient with stage I-III and HoR+/HER2- breast cancer. The escalating therapy was recommended to young age breast cancer with stage I-III and HoR+/HER2- subtype.


Asunto(s)
Neoplasias de la Mama , Humanos , Persona de Mediana Edad , Adulto Joven , Adulto , Femenino , Neoplasias de la Mama/metabolismo , Estadificación de Neoplasias , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Programa de VERF , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Hormonas , Pronóstico
20.
Front Immunol ; 13: 1041126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451825

RESUMEN

Purpose: Neoadjuvant chemoradiotherapy (nCRT) is a standard treatment option for patients with stage III oesophageal cancer. Approximately 30% of oesophageal cancer patients will have a pathological complete response (pCR) after nCRT. However, available clinical methods cannot accurately predict pCR for patients. We aimed to find more indicators that could be used to predict the pathological response to nCRT. Method: A total of 84 patients with stage III oesophageal squamous cell cancer were enrolled in this study. Ten patients failed to have surgery as a result of progressive disease (PD). Among the patients who underwent surgery, 32 patients had a pathologic complete response (pCR), whereas 42 patients showed no or partial response (npCR) after nCRT. Routine blood test results and lymphocyte subset assessments before and after nCRT were retrospectively analysed. Univariate and multivariate analyses were used to identify independent predictors of the clinical curative effect of nCRT. Eventually, nomograms were established for predicting the PD and pCR rates. Results: The numbers of lymphocytes, B lymphocytes, T lymphocytes, Th lymphocytes, Ts lymphocytes, and NK cells and the percentages of B lymphocytes and NK cells were decreased significantly after nCRT (P < 0.0001), whereas the percentages of T lymphocytes and Ts lymphocytes increased (P < 0.0001). Univariate analysis showed that age, the length of the lesion, the level of haemoglobin before nCRT, and the amount of change in haemoglobin were related to PD, and the percentage of NK cells after nCRT was related to pCR. Multivariate logistic analysis demonstrated that the length of the lesion, the neutrophil-to-lymphocyte ratio (NLR) before nCRT, and the amount of change in haemoglobin were independent predictors of PD, whereas the percentage of NK cells after nCRT was an independent predictor of pCR. Conclusion: Lymphocyte subsets changed dramatically during nCRT, and these changes together with baseline and posttreatment lymphocyte subsets have predictive value in determining the response to nCRT for oesophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Terapia Neoadyuvante , Estudios Retrospectivos , Carcinoma de Células Escamosas de Esófago/terapia , Subgrupos Linfocitarios , Neoplasias Esofágicas/terapia , Células Asesinas Naturales , Células Epiteliales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...