Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610025

RESUMEN

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Asunto(s)
Antineoplásicos , Ganoderma , Células Madre Mesenquimatosas , Animales , Ratones , Ratones Endogámicos C57BL , Docetaxel , Cisplatino , Especies Reactivas de Oxígeno , Esporas Fúngicas , Hematopoyesis , Fluorouracilo , Lípidos
2.
Stem Cells Transl Med ; 12(5): 245-257, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37018467

RESUMEN

Severe trauma or chronic wounds can deplete the keratinocyte stem cells (KSCs) present in the epidermal basal layer or inhibit their migration leading to compromised wound healing. Supplementing KSCs is the key to solution while lineage reprogramming provides a new approach to acquiring KSCs. Through direct lineage reprogramming, induced KSCs (iKSCs) can be produced from somatic cells, which exhibit great application potential. Two strategies are currently being used to directly generate iKSCs, lineage transcription factor (TF)-mediated and pluripotency factors-mediated. This review focuses on lineage TF-mediated direct reprogramming and describes the conversion process along with the underlying epigenetic mechanisms. It also discusses other potential induction strategies to generate iKSCs and challenges associated with in situ reprogramming for skin repair.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Queratinocitos/metabolismo , Células Madre/metabolismo , Regulación de la Expresión Génica , Dermis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo
3.
Molecules ; 27(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35268679

RESUMEN

Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited ß-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.


Asunto(s)
Receptores de IgE
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...