Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(5): 2678-2688, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38273455

RESUMEN

Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using ß-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a ß-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.


Asunto(s)
Xilosa , Xilosidasas , Xilosa/metabolismo , Filogenia , Xilosidasas/química , Polisacáridos/metabolismo , Hidrólisis , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
2.
Plant Physiol ; 189(1): 99-111, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157086

RESUMEN

Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.


Asunto(s)
Transferasas Alquil y Aril , Diterpenos , Leonurus , Plantas Medicinales , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Diterpenos/metabolismo , Leonurus/metabolismo , Transcriptoma
3.
Biochem Mol Biol Educ ; 48(6): 631-634, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33075847

RESUMEN

Science requires that we are always current with research, techniques, and tools but what are the best approaches for continuing education? The presenters in this session described a range of approaches used in universities, government bodies, and industry.


Asunto(s)
Educación Continua , Estudios Interdisciplinarios , Biología Molecular/educación , Congresos como Asunto , Humanos
4.
Front Genet ; 11: 1025, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101366

RESUMEN

Studying transcriptome chronological change from tissues across the whole body can provide valuable information for understanding aging and longevity. Although there has been research on the effect of single-tissue transcriptomes on human aging or aging in mice across multiple tissues, the study of human body-wide multi-tissue transcriptomes on aging is not yet available. In this study, we propose a quantitative model to predict human age by using gene expression data from 46 tissues generated by the Genotype-Tissue Expression (GTEx) project. Specifically, the biological age of a person is first predicted via the gene expression profile of a single tissue. Then, we combine the gene expression profiles from two tissues and compare the predictive accuracy between single and two tissues. The best performance as measured by the root-mean-square error is 3.92 years for single tissue (pituitary), which deceased to 3.6 years when we combined two tissues (pituitary and muscle) together. Different tissues have different potential in predicting chronological age. The prediction accuracy is improved by combining multiple tissues, supporting that aging is a systemic process involving multiple tissues across the human body.

5.
Chin J Nat Med ; 18(9): 659-665, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32928509

RESUMEN

Triterpenoids have been described in Andrographis paniculata. Oleanolic acid exhibits high biological activity and is widely used in the clinic, and ß-sitosterol not only has good biological activity but also plays an important physiological role in plants. However, analysis of the biosynthetic pathway of triterpenoids in Andrographis paniculata has not been reported. Here, we provide the first report of the isolation and identification of nine 2, 3-oxidosqualene cyclases (ApOSC3 to ApOSC11) from A. paniculata. The results showed that ApOSC4 represented a monofunctional synthase that could convert 2, 3-oxidosqualene to ß-amyrin. ApOSC5 as a bifunctional 2, 3-oxidosqualene cyclases, could transfer 2, 3-oxidosqualene to ß-amyrin and α-amyrin. ApOSC6 to ApOSC8 composed the multifunctional 2, 3-oxidosqualene cyclases that could convert 2, 3-oxidosqualene to ß-amyrin, α-amyrin and one or two undetermined triterpenoids. This study provides a better understanding of the biosynthetic pathway of triterpenoids in A. paniculata, and the discovery of multifunctional 2, 3-oxidosqualene cyclases ApOSC5 to ApOSC8 of the facilitates knowledge of the compounds diversity in A. paniculata.


Asunto(s)
Andrographis/química , Clonación Molecular/métodos , Escualeno/análogos & derivados , Triterpenos/metabolismo , Vías Biosintéticas/fisiología , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/química , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/metabolismo , Escualeno/química , Escualeno/metabolismo , Triterpenos/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-32850691

RESUMEN

Sequencing-based identification of tumor tissue-of-origin (TOO) is critical for patients with cancer of unknown primary lesions. Even if the TOO of a tumor can be diagnosed by clinicopathological observation, reevaluations by computational methods can help avoid misdiagnosis. In this study, we developed a neural network (NN) framework using the expression of a 150-gene panel to infer the tumor TOO for 15 common solid tumor cancer types, including lung, breast, liver, colorectal, gastroesophageal, ovarian, cervical, endometrial, pancreatic, bladder, head and neck, thyroid, prostate, kidney, and brain cancers. To begin with, we downloaded the RNA-Seq data of 7,460 primary tumor samples across the above mentioned 15 cancer types, with each type of cancer having between 142 and 1,052 samples, from the cancer genome atlas. Then, we performed feature selection by the Pearson correlation method and performed a 150-gene panel analysis; the genes were significantly enriched in the GO:2001242 Regulation of intrinsic apoptotic signaling pathway and the GO:0009755 Hormone-mediated signaling pathway and other similar functions. Next, we developed a novel NN model using the 150 genes to predict tumor TOO for the 15 cancer types. The average prediction sensitivity and precision of the framework are 93.36 and 94.07%, respectively, for the 7,460 tumor samples based on the 10-fold cross-validation; however, the prediction sensitivity and precision for a few specific cancers, like prostate cancer, reached 100%. We also tested the trained model on a 20-sample independent dataset with metastatic tumor, and achieved an 80% accuracy. In summary, we present here a highly accurate method to infer tumor TOO, which has potential clinical implementation.

7.
Methods Mol Biol ; 2204: 3-12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710310

RESUMEN

The status of T cell receptors (TCRs) repertoire is associated with the occurrence and progress of various diseases and can be used in monitoring the immune responses, predicting the prognosis of disease and other medical fields. High-throughput sequencing promotes the studying in TCR repertoire. The chapter focuses on the whole process of TCR profiling, including DNA extraction, library construction, high-throughput sequencing, and how to analyze data.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores de Antígenos de Linfocitos T/genética , Clonación Molecular/métodos , Regiones Determinantes de Complementariedad/genética , Biblioteca de Genes , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Linfocitos T/fisiología
8.
Biomed Res Int ; 2020: 6782046, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32462012

RESUMEN

Gene coexpression analysis is widely used to infer gene modules associated with diseases and other clinical traits. However, a systematic view and comparison of gene coexpression networks and modules across a cohort of tissues are more or less ignored. In this study, we first construct gene coexpression networks and modules of 52 GTEx tissues and cell lines. The network modules are enriched in many tissue-common functions like organelle membrane and tissue-specific functions. We then study the correlation of tissues from the network point of view. As a result, the network modules of most tissues are significantly correlated, indicating a general similar network pattern across tissues. However, the level of similarity among the tissues is different. The tissues closing in a physical location seem to be more similar in their coexpression networks. For example, the two adjacent tissues fallopian tube and bladder have the highest Fisher's exact test p value 8.54E-291 among all tissue pairs. It is known that immune-associated modules are frequently identified in coexperssion modules. In this study, we found immune modules in many tissues like liver, kidney cortex, lung, uterus, adipose subcutaneous, and adipose visceral omentum. However, not all tissues have immune-associated modules, for example, brain cerebellum. Finally, by the clique analysis, we identify the largest clique of modules, in which the genes in each module are significantly overlapped with those in other modules. As a result, we are able to find a clique of size 40 (out of 52 tissues), indicating a strong correlation of modules across tissues. It is not surprising that the 40 modules are most commonly enriched in immune-related functions.


Asunto(s)
Análisis por Conglomerados , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Tejido Adiposo , Encéfalo , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Riñón , Hígado , Pulmón , Útero
9.
Chin Med ; 14: 42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31592267

RESUMEN

BACKGROUND: The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known, traditional Chinese medicine. Tanshinones are active compounds that accumulate in the periderm, resulting in red-colored roots. However, lines with orange roots have been observed in cultivated fields. Here, we performed metabolome and transcriptome analyses to investigate the changes of orange-rooted Danshen. METHODS: Metabolome analysis was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-Tof-MS) to investigate the metabolites variation between orange Danshen and normal Danshen. RNA sequencing and KEGG enrichment analysis were performed to analyzing the differentially expressed genes between orange-rooted and normal Danshen. RESULTS: In total, 40 lipophilic components were detected in metabolome analysis, and seven compounds were significantly decreased in the orange Danshen, including the most abundant active compounds, tanshinone IIA and tanshinone I in normal Danshen. Systematic analysis of transcriptome profiles revealed that the down-regulated genes related to catalytic dehydrogenation was not detected. However, two genes related to stress resistance, and four genes related to endoplasmic reticulum (ER)-associated degradation of proteins were up-regulated in orange Danshen. CONCLUSIONS: Decreases in the content of dehydrogenated furan ring tanshinones such as tanshinone IIA resulted in phenotypic changes and quality degradation of Danshen. Transcriptome analysis indicated that incorrect folding and ER-associated degradation of corresponding enzymes, which could catalyze C15-C16 dehydrogenase, might be contributed to the decrease in dehydrogenated furan ring tanshinones, rather than lower expression of the relative genes. This limited dehydrogenation of cryptotanshinone and dihydrotanshinone I into tanshinones IIA and I products, respectively, led to a reduced quality of Danshen in cultivated fields.

10.
Plant Mol Biol ; 101(3): 221-234, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31203559

RESUMEN

KEY MESSAGE: Metabolic module, gene expression pattern and PLS modeling were integrated to precisely identify the terpene synthase responsible for sesquiterpene formation. Functional characterization confirmed the feasibility and sensitivity of this strategy. Plant secondary metabolite biosynthetic pathway elucidation is crucial for the production of these compounds with metabolic engineering. In this study, an integrated strategy was employed to predict the gene function of sesquiterpene synthase (STS) genes using turmeric as a model. Parallel analysis of gene expression patterns and metabolite modules narrowed the candidates into an STS group in which the STSs showed a similar expression pattern. The projections to latent structures by means of partial least squares model was further employed to establish a clear relationship between the candidate STS genes and metabolites and to predict three STSs (ClTPS16, ClTPS15 and ClTPS14) involved in the biosynthesis of several sesquiterpene skeletons. Functional characterization revealed that zingiberene and ß-sesquiphellandrene were the major products of ClTPS16, and ß-eudesmol was produced by ClTPS15, both of which indicated the accuracy of the prediction. Functional characterization of a control STS, ClTPS1, produced a small amount of ß-sesquiphellandrene, as predicted, which confirmed the sensitivity of metabolite module analysis. This integrated strategy provides a methodology for gene function predictions, which represents a substantial improvement in the elucidation of biosynthetic pathways in nonmodel plants.


Asunto(s)
Transferasas Alquil y Aril/genética , Curcuma/genética , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Vías Biosintéticas , Curcuma/enzimología , Perfilación de la Expresión Génica , Genes de Plantas , Ingeniería Metabólica , Sesquiterpenos Monocíclicos , Reproducibilidad de los Resultados
11.
Dev Cell ; 48(5): 697-709.e5, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30861376

RESUMEN

Calcium signals act as universal second messengers that trigger many cellular processes in animals and plants, but how specific calcium signals are generated is not well understood. In this study, we determined that AtANN4, a putative calcium-permeable transporter, and its interacting proteins, SCaBP8 and SOS2, generate a calcium signal under salt stress, which initially activates the SOS pathway, a conserved mechanism that modulates ion homeostasis in plants under salt stress. After activation, SCaBP8 promotes the interaction of protein kinase SOS2 with AtANN4, which enhances its phosphorylation by SOS2. This phosphorylation of AtANN4 further increases its interaction with SCaBP8. Both the interaction with and phosphorylation of AtANN4 repress its activity and alter calcium transients and signatures in HEK cells and plants. Our results reveal how downstream targets are required to create a specific calcium signal via a negative feedback regulatory loop, thereby enhancing our understanding of the regulation of calcium signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Salino/fisiología , Arabidopsis/metabolismo , Homeostasis/fisiología , Fosforilación , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
12.
Plant Cell Rep ; 38(1): 117-128, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30448883

RESUMEN

KEY MESSAGE: We found that ApGGPPS1, ApGGPPS2, and ApGGPPS3 can convert IPP and DMAPP to GGPP. ApGGPPS2 is probably involved in andrographolide biosynthesis. ApGGPPS3 may be responsible for the synthesis of the cytosolic GGPP. Andrographis paniculata is a traditional herb for the treatment of sore throat, flu, upper respiratory tract infections and other disorders. In A. paniculata, GGPP is not only the precursor of andrographolide and its primary bioactive compounds, but also the precursor of chlorophylls, carotenoids, gibberellins, and abscisic acid, which are the biomolecules of photosynthesis, growth regulation and other physiological and ecological processes. In this study, four cDNAs (named ApGGPPS1, ApGGPPS2, ApGGPPS3 and ApGGPPS4) encoding geranylgeranyl pyrophosphate synthases from A. paniculata were putatively isolated. Bioinformatic and phylogenetic analyses suggested that these ApGGPPS are highly similar to the geranylgeranyl pyrophosphate synthases in other plants. Prokaryotic expression showed that ApGGPPS1, ApGGPPS2 and ApGGPPS3 could convert IPP and DMAPP to GGPP, although ApGGPPS4 lacks a similar function. The expression of ApGGPPS2 was similar as ApCPS2 under MeJA treatment, ApCPS2 involved in the biosynthesis pathway of andrographolide (Shen et al., Biotechnol Lett 38:131-137, 2016a), has been proven through Virus-induced Gene Siliencing (VIGS) (Shen et al., Acta Bot Boreal 36:17-22, 2016b), and the subcellular localization of ApGGPPS2 was shown to localize in the plastid, suggested that ApGGPPS2 could be the key synthase in the biosynthesis pathway of andrographolide. In addition, ApGGPPS3 was shown to localize in the cytoplasm, suggested that ApGGPPS3 may be responsible for the synthesis of cytosolic GGPP, which may participate in the synthesis of cytosolic oligoprenols as side chains to produce ubiquinone, dolichols or other isoprenoids, in the synthesis of polyisoprenoids, and in protein prenylation.


Asunto(s)
Andrographis/metabolismo , Clonación Molecular , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Andrographis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética
13.
Cancer Cell Int ; 18: 148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275771

RESUMEN

BACKGROUND: Arterialized vein flap is a kind of unphysiological flap. Unphysiological reconstruction of blood circulation leads to higher load than that supported by physiological flap and is the culprit of flap swelling, blood stasis, skin blistering, and necrosis after flap grafting. To resolve the multiple disadvantages of traditional flap grafting, by introducing the principles of fluid mechanics, shunt-decompression surgery is prepared to decline the circulation preload and improve the prognosis of arterialized vein flap grafting. METHODS: By introducing the principles of fluid mechanics, we established the model of shunt-decompression arterialized vein flap, which satisfied the common properties of general fluid that the interface pressure between object and fluid is reduced when the velocity of fluid is increased and vice versa-the effect of Bernoulli. Under this rule, we anastomose the arterialized vein to the branch of main artery of recipient region or make end-to-side anastomosis, which can maintain the blood flow of main artery, decrease the perfusion of flap, and preserve the decompressive effect of main artery to branches. From March, 2016 to September, 2016, we performed animal experiments on ten male bama mini pigs with average weight of 28 ± 2.35 kg. Superior epigastric artery of pig was used for feeding artery to arterialize the superficial epigastric veins. The total area of flap is 8 cm × 6 cm. End-to-side anastomosis and end-to-end anastomosis were established in experimental group and control group, respectively. Doppler speckle perfusion imaging apparatus was used to monitor the alterations of flap perfusion, blood flow of flap, tissue swelling and survival of flaps. RESULTS: The average flap perfusion (PU) at 1 week after surgery is 83.62 ± 3.14 in experimental group and 98.14 ± 6.54 in control group, respectively (P < 0.05), indicating the significant reduction of flap blood perfusion in experimental group as compared with control group. As to the survival of flaps, 7 flaps completely survived, 3 showed partial necrosis, and no one was found as complete necrosis in experimental group, while only 3 flaps survived, and 4 flaps and 3 flaps showed partial necrosis and complete necrosis in control group, respectively (P < 0.05). CONCLUSION: Based on the physiological features of arterialized vein flap and its problems in clinical application, we improved the anastomosis strategy of flap grafting and obtained excellent experimental outcomes, which provides an insight for the clinical application of arterialized vein flaps.

14.
Org Lett ; 20(19): 5999-6002, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30234309

RESUMEN

ApUGT, a diterpene glycosyltransferase from Andrographis paniculata, could transfer a glucose to the C-19 hydroxyl moiety of andrograpanin to form neoandrographolide. This glycosyltransferase has a broad substrate scope, and it can glycosylate 26 natural and unnatural compounds of different structural types. This study provides a basis for exploring the glycosylation mechanism of ent-labdane-type diterpenes and plays an important role in diversifying the structures used in drug discovery.


Asunto(s)
Biocatálisis , Glucósidos/biosíntesis , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Andrographis/enzimología , Diterpenos , Cinética , Tetrahidronaftalenos
15.
Int J Biol Macromol ; 120(Pt B): 1515-1524, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30253176

RESUMEN

Cytochrome P450 reductase (CPR) is the redox partner of various P450s involved in primary and secondary metabolism. Here, we identified and characterized two paralogs of cytochrome P450 reductase from Siraitia grosvenorii. There were two full-length CPR isoforms in the S. grosvenorii fruit transcriptome dataset. They had the same open reading frames of 2, 124 bp, encoding 707 amino acids. A phylogenetic analysis characterized both SgCPR1 and SgCPR2 as Class II dicotyledonous CPRs. The recombinant proteins SgCPR1 and SgCPR2 could reduce cytochrome c and ferricyanide in a NADPH-dependent manner. The SgCPR1 and SgCPR2 transcripts were detected in all examined tissues of S. grosvenorii, and in fresh fruit, they had expression patterns similar to several key enzymes that require CPR as a partner during their biosynthesis. The expression levels of the SgCPRs were induced after a methyl jasmonate treatment. The extracts from yeast co-expressing SgCPR1/SgCPR2 and the cytochrome P450 enzyme CYP76AH1 produced ferruginol, indicating the positive effects of SgCPR1/SgCPR2 on the CYP76AH1 activity. A docking analysis confirmed the experimentally deduced functional activities of SgCPR1 and SgCPR2 for NADPH, FAD and FMN. Thus, SgCRP1 and SgCPR2 are both likely to participate in secondary metabolism, especially mogroside biosynthesis in S. grosvenorii.


Asunto(s)
Cucurbitaceae/enzimología , Cucurbitaceae/genética , Regulación de la Expresión Génica de las Plantas , NADPH-Ferrihemoproteína Reductasa/genética , Secuencia de Aminoácidos , Biocatálisis , Clonación Molecular , Simulación del Acoplamiento Molecular , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Filogenia , Conformación Proteica , Análisis de Secuencia
16.
Genes (Basel) ; 9(7)2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30004447

RESUMEN

With the development and application of next-generation sequencing (NGS) and target capture technology, the demand for an effective analysis method to accurately detect gene fusion from high-throughput data is growing. Hence, we developed a novel fusion gene analyzing method called single-end gene fusion (SEGF) by starting with single-end DNA-seq data. This approach takes raw sequencing data as input, and integrates the commonly used alignment approach basic local alignment search tool (BLAST) and short oligonucleotide analysis package (SOAP) with stringent passing filters to achieve successful fusion gene detection. To evaluate SEGF, we compared it with four other fusion gene discovery analysis methods by analyzing sequencing results of 23 standard DNA samples and DNA extracted from 286 lung cancer formalin fixed paraffin embedded (FFPE) samples. The results generated by SEGF indicated that it not only detected the fusion genes from standard samples and clinical samples, but also had the highest accuracy and sensitivity among the five compared methods. In addition, SEGF was capable of detecting complex gene fusion types from single-end NGS sequencing data compared with other methods. By using SEGF to acquire gene fusion information at DNA level, more useful information can be retrieved from the DNA panel or other DNA sequencing methods without generating RNA sequencing information to benefit clinical diagnosis or medication instruction. It was a timely and cost-effective measure with regard to research or diagnosis. Considering all the above, SEGF is a straightforward method without manipulating complicated arguments, providing a useful approach for the precise detection of gene fusion variation.

17.
Genes (Basel) ; 9(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029519

RESUMEN

GADD45B acts as a member of the growth arrest DNA damage-inducible gene family, which has demonstrated to play critical roles in DNA damage repair, cell growth, and apoptosis. This study aimed to explore the potential relationship between GADD45B expression and tumor progression and evaluate the clinical value of GADD45B in stage II colorectal cancer (CRC). The expression patterns and prognostic value of GADD45B in CRC were analyzed based on The Cancer Genomic Atlas (TCGA). GADD45B expression features of 306 patients with stage II CRC and 201 patients with liver metastasis of CRC were investigated using immunochemical staining on tissue microarrays. Afterward, survival analysis and stratification analysis were performed in stage II to explore the prognostic and predictive significance of GADD45B. Overexpressed GADD45B is associated with poorer prognosis for CRC patients both in overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p = 0.001) based on the TCGA database. Analysis results according to the stage II CRC cohort and the liver metastatic CRC cohort revealed that GADD45B was gradually upregulated in normal mucosa including primary colorectal cancer (PCC). Colorectal liver metastases (CLM) tissues were arranged in order (normal tissue vs. PCC p = 0.005 and PCC vs. CLM p = 0.001). The low GADD45B group had a significantly longer five-year OS (p = 0.001) and progression-free survival (PFS) (p < 0.001) than the high GADD45B group for the stage II patients. The multivariate Cox regression analysis results proved that the expression level of GADD45B was an independent prognostic factor for stage II after radical surgery (OS: Hazard Ratio (HR) 0.479, [95% confidence interval (CI) 0.305⁻0.753] and PFS:HR 0.490, [95% CI 0.336⁻0.714]). In high GADD45B expression subgroup of stage II cohort, the patients who underwent adjuvant chemotherapy had longer PFS than those who did not (p = 0.008). High expression levels of GADD45B is an independent prognostic factor of decreased OS and PFS in stage II CRC patients. The stage II CRC patients with high GADD45B expression might benefit from adjuvant chemotherapy.

18.
Front Microbiol ; 9: 619, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670594

RESUMEN

Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal ß-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal ß-oxidation to achieve microalgae oils with higher levels of MCFAs.

19.
Zhongguo Zhong Yao Za Zhi ; 43(2): 309-315, 2018 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29552849

RESUMEN

Andrographolide is a main active ingredient in traditional Chinese medicine Andrographis paniculata,with a variety of pharmacological activity,widely used in clinical practice. However its biosynthetic pathway has not been resolved. Cytochrome P450 reductase provides electrons for CYP450 and plays an important role in the CYP450 catalytic process. In this study,the coding sequence of A. paniculata CPR was screened and cloned by homologous alignment,named ApCPR4. The ApCPR4 protein was obtained by prokaryotic expression. After isolation and purification,the enzyme activity was identified in vitro. The results showed that ApCPR4 could reduce the cytochrome c and ferricyanide in NADPH-dependent manner. In order to verify its in vivo function,ApCPR4 and CYP76AH1 were co-transformed into yeast engineering bacteria. The results showed that ApCPR4 could help CYP76AH1 catalyze the formation of rustols in yeast. Real-time quantitative PCR results showed that the expression of ApCPR4 increased gradually in leaves treated with methyl jasmonate (MeJA). The expression pattern was consistent with the trend of induction and accumulation of andrographolide by MeJA,suggesting that ApCPR4 was associated with biosynthesis of andrographolide.


Asunto(s)
Andrographis/enzimología , NADPH-Ferrihemoproteína Reductasa/genética , Proteínas de Plantas/genética , Acetatos , Andrographis/genética , Vías Biosintéticas , Clonación Molecular , Ciclopentanos , Diterpenos/metabolismo , Oxilipinas , Hojas de la Planta/enzimología
20.
Front Genet ; 9: 650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30631342

RESUMEN

Apolipoprotein E (ApoE) plays a key role in tumorigenesis and progression, such as cell proliferation, angiogenesis and metastasis. ApoE overexpression was associated with aggressive biological behaviors and poor prognosis in a variety of tumor according to previous studies. This study aimed to assess the prognostic value and explore the potential relationship with tumor progression in colorectal cancer (CRC). We collected the expression profiling microarray data from the Gene Expression Omnibus (GEO), investigated the ApoE expression pattern between the primary CRC and liver metastasis of CRC, and then explored the gene with prognostic significance based on the TCGA database. ApoE high expression was associated with poor overall survival (OS, p = 0.015) and progression-free survival (PFS, p = 0.004) based on the public databases. Next, ApoE expression was evaluated in two CRC cohorts by immunohistochemistry, of whom 306 cases were stage II and 201 cases were metastatic liver CRC. In the cohort of the liver metastasis, the ApoE expression was increasing in normal mucosa tissue, primary colorectal cancer (PC), and colorectal liver metastases (CLM) in order. Meanwhile, the level of ApoE expression in stage II tumor sample which had no progression evidence in 5 years was lower than that in PC of synchronous liver metastases. The high ApoE expression in PC was an independent risk factor in both stage II (HR = 2.023, [95% CI 1.297-3.154], p = 0.002; HR = 1.883, [95% CI 1.295-2.737], p = 0.001; OS and PFS respectively) and simultaneous liver metastasis (HR = 1.559, [95% CI 1.096-2.216], p = 0.013; HR = 1.541, [95% CI 1.129-2.104], p = 0.006; OS and PFS respectively). However, the overexpression of ApoE could not predict the benefit from the chemotherapy in stage II. The study revealed that the relevance of the ApoE overexpression in CRC progression, conferring a poor prognosis in CRC patients especially for stage II and simultaneous liver metastasis. These finding may improve the prognostic stratification of patients for clinical strategy selection and promote CRC clinic outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...