Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5885-5897, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439304

RESUMEN

Lensless coherent x-ray imaging techniques have great potential for high-resolution imaging of magnetic systems with a variety of in-situ perturbations. Despite many investigations of ferromagnets, extending these techniques to the study of other magnetic materials, primarily antiferromagnets, is lacking. Here, we demonstrate the first (to our knowledge) study of an antiferromagnet using holographic imaging through the 'holography with extended reference by autocorrelation linear differential operation' technique. Energy-dependent contrast with both linearly and circularly polarized x-rays are demonstrated. Antiferromagnetic domains and topological textures are studied in the presence of applied magnetic fields, demonstrating quasi-cyclic domain reconfiguration up to 500 mT.

2.
Nat Mater ; 23(5): 619-626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374414

RESUMEN

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show-via transmission-based antiferromagnetic vector mapping-that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.

3.
Nanotechnology ; 34(27)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36947871

RESUMEN

The topological surface states (TSSs) in topological insulators (TIs) offer exciting prospects for dissipationless spin transport. Common spin-based devices, such as spin valves, rely on trilayer structures in which a non-magnetic layer is sandwiched between two ferromagnetic (FM) layers. The major disadvantage of using high-quality single-crystalline TI films in this context is that a single pair of spin-momentum locked channels spans across the entire film, meaning that only a very small spin current can be pumped from one FM to the other, along the side walls of the film. On the other hand, using nanocrystalline TI films, in which the grains are large enough to avoid hybridization of the TSSs, will effectively increase the number of spin channels available for spin pumping. Here, we used an element-selective, x-ray based ferromagnetic resonance technique to demonstrate spin pumping from a FM layer at resonance through the TI layer and into the FM spin sink.

4.
Nature ; 590(7844): 74-79, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536652

RESUMEN

In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.

5.
Nanoscale ; 8(43): 18454-18460, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27778015

RESUMEN

The competition between superconductivity and ferromagnetism poses great challenges and has attracted renewed interest for applications in novel spintronic devices. In order to emphasize their interactions, we fabricated a heterostructure composed of superconducting YBa2Cu3O7-δ (YBCO) film embedded with itinerant ferromagnetic SrRuO3 (SRO) mesocrystals. Starting from a doping concentration of 10 vol% of SRO mesocrystal in a YBCO matrix, corresponding to the density of SRO nanocrystals ∼5 × 109 cm-2, which exhibits the typical characteristic of a metal-superconductor transition, and then increasing the magnetic interactions as a function of SRO embedment, the electronic correlation and the interplay between superconductivity and magnetism throughout the temperature regime were investigated. A metal-insulator transition in the normal state of YBCO and a crossover between superconductivity and magnetism at low temperatures were found upon increasing the density of nano-size SRO crystallites in the YBCO matrix as a consequence of competing interactions between these two ordered phases.

6.
Adv Mater ; 28(41): 9142-9151, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27571277

RESUMEN

A novel artificially created MnO2 monolayer system is demonstrated in atomically controlled epitaxial perovskite heterostructures. With careful design of different electrostatic boundary conditions, a magnetic transition as well as a metal-insulator transition of the MnO2 monolayer is unveiled, providing a fundamental understanding of dimensionality-confined strongly correlated electron systems and a direction to design new electronic devices.

7.
Adv Mater ; 28(4): 764-70, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26607052

RESUMEN

The coupling of the localized surface plasmon resonance of Au nanoparticles is utilized to deliver a visible-light stimulus to control conduction at the LaAlO3 /SrTiO3 interface. A giant photoresponse and the controllable metal-insulator transition are characterized at this heterointerface. This study paves a new route to optical control of the functionality at the heterointerfaces.

8.
Sci Rep ; 5: 15201, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26468972

RESUMEN

Predicting and understanding the cation distribution in spinels has been one of the most interesting problems in materials science. The present work investigates the effect of cation redistribution on the structural, electrical, optical and magnetic properties of mixed-valent inverse spinel NiCo2O4(NCO) thin films. It is observed that the films grown at low temperatures (T < 400 °C) exhibit metallic behavior while that grown at higher temperatures (T > 400 °C) are insulators with lower ferrimagnetic-paramagnetic phase transition temperature. So far, n-type Fe3O4 has been used as a conducting layer for the spinel thin films based devices and the search for a p-type counterpart still remains elusive. The inherent coexistence and coupling of ferrimagnetic order and the metallic nature in p-type NCO makes it a promising candidate for spintronic devices. Detailed X-ray Absorption and X-ray Magnetic Circular Dichroism studies revealed a strong correlation between the mixed-valent cation distribution and the resulting ferrimagnetic-metallic/insulating behavior. Our study clearly demonstrates that it is the concentration of Ni(3+)ions and the Ni(3+)-O(2-)Ni(2+) double exchange interaction that is crucial in dictating the metallic behavior in NCO ferrimagnet. The metal-insulator and the associated magnetic order-disorder transitions can be tuned by the degree of cation site disorder via growth conditions.

9.
Nano Lett ; 14(11): 6073-9, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25313666

RESUMEN

Mesocrystal, a new class of crystals as compared to conventional and well-known single crystals and polycrystalline systems, has captured significant attention in the past decade. Recent studies have been focused on the advance of synthesis mechanisms as well as the potential on device applications. In order to create further opportunities upon functional mesocrystals, we fabricated a self-assembled nanocomposite composed of magnetic CoFe2O4 mesocrystal in Sr-doped manganites. This combination exhibits intriguing structural and magnetic tunabilities. Furthermore, the antiferromagnetic coupling of the mesocrystal and matrix has induced an additional magnetic perturbation to spin-polarized electrons, resulting in a significantly enhanced magnetoresistance in the nanocomposite. Our work demonstrates a new thought toward the enhancement of intrinsic functionalities assisted by mesocrystals and advanced design of novel mesocrystal-embedded nanocomposites.

10.
ACS Nano ; 8(6): 6242-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24841152

RESUMEN

Self-assembled nanocomposites with a high interface-to-volume ratio offer an opportunity to overcome limitations in current technology, where intriguing transport behaviors can be tailored by the choice of proper interactions of constituents. Here we integrated metallic perovskite oxide SrRuO3-wurzite semiconductor ZnO nanocomposites to investigate the room-temperature metal-insulator transition and its effect on photoresponse. We demonstrate that the band structure at the interface can be tuned by controlling the interface-to-volume ratio of the nanocomposites. Photoinduced carrier injection driven by visible light was detected across the nanocomposites. This work shows the charge interaction of the vertically integrated multiheterostructures by incorporating a controllable interface-to-volume ratio, which is essential for optimization of the design and functionality of electronic devices.

11.
Nanoscale Res Lett ; 8(1): 313, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23826909

RESUMEN

A Sb-doped ZnO microrod array was fabricated on an Al-doped ZnO thin film by electrodeposition. Strong violet luminescence, originated from free electron-to-acceptor level transitions, was identified by temperature-dependent photoluminescence measurements. This acceptor-related transition was attributed to substitution of Sb dopants for Zn sites, instead of O sites, to form a complex with two Zn vacancies (VZn), the SbZn-2VZn complex. This SbZn-2VZn complex has a lower formation energy and acts as a shallow acceptor which can induce the observed strong violet luminescence. The photoresponsivity of our ZnO p-n homojunction device under a negative bias demonstrated a nearly 40-fold current gain, illustrating that our device is potentially an excellent candidate for photodetector applications in the ultraviolet wavelength region.

12.
ACS Nano ; 7(8): 6522-32, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23879622

RESUMEN

A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However, reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1,3,5-triazine on Cu metal catalyst. When reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1% to 5.6%. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in our N-doped graphene sheets.


Asunto(s)
Grafito/química , Nanotecnología/métodos , Nitrógeno/química , Técnicas Biosensibles , Catálisis , Cobre/química , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Modelos Químicos , Espectroscopía de Fotoelectrones , Espectrometría Raman , Temperatura , Triazinas/química
13.
Nanoscale Res Lett ; 7(1): 640, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23173952

RESUMEN

We have performed transport measurements on a gallium phosphide antimonide (GaPSb) film grown on GaAs. At low temperatures (T), transport is governed by three-dimensional Mott variable range hopping (VRH) due to strong localization. Therefore, electron-electron interactions are not significant in GaPSb. With increasing T, the coexistence of VRH conduction and the activated behavior with a gap of 20 meV is found. The fact that the measured gap is comparable to the thermal broadening at room temperature (approximately 25 meV) demonstrates that electrons can be thermally activated in an intrinsic GaPSb film. Moreover, the observed carrier density dependence on temperature also supports the coexistence of VRH and the activated behavior. It is shown that the carriers are delocalized either with increasing temperature or magnetic field in GaPSb. Our new experimental results provide important information regarding GaPSb which may well lay the foundation for possible GaPSb-based device applications such as in high-electron-mobility transistor and heterojunction bipolar transistors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...