Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Total Environ ; 931: 172973, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705294

RESUMEN

In this work, corn straw was used as raw material, Hummers method and activation were used to adjust the graphite structure in biochar, and preparing straw based biochar (H-BCS) with ultra-high specific surface area (3441.80 m2/g), highly total pore volume (1.9859 cm3/g), and further enhanced physicochemical properties. Compared with untreated straw biochar (BCS), the specific surface area and total pore volume of H-BCS were increased by 47.24 % and 55.85 %, respectively. H-BCS showed good removal ability in subsequent experiments by using chloramphenicol (CP), hexavalent chromium (Cr6+), and crystal violet (CV) as adsorption models. In addition, the adsorption capacities of H-BCS (CP: 1396.30 mg/g, Cr6+: 218.40 mg/g, and CV: 1246.24 mg/g) are not only higher than most adsorbents, even after undergoing 5 cycles of regeneration, its adsorption capacity remains above 80 %, indicating significant potential for practical applications. In addition, we also speculated and analyzed the conjecture about the "graphite-structure regulation" during the preparation process, and finally discussed the possible mechanism during the adsorption processes. We hope this work could provide a new strategy to solve the restriction of biochar performance by further exploring the regulation of graphite structure in carbon materials.


Asunto(s)
Carbón Orgánico , Grafito , Contaminantes Químicos del Agua , Carbón Orgánico/química , Grafito/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Adsorción , Eliminación de Residuos Líquidos/métodos , Cromo/química , Contaminación del Agua/prevención & control , Zea mays/química , Purificación del Agua/métodos
2.
J Adv Res ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735388

RESUMEN

INTRODUCTION: Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES: This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS: We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS: Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION: Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.

3.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588984

RESUMEN

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Modelos Animales de Enfermedad
4.
Biochem Biophys Res Commun ; 705: 149670, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38442444

RESUMEN

Cholestasis is characterized by impaired bile secretion and flow, leading to the accumulation of toxic bile acids in the liver, further causing inflammatory reaction, fibrosis, and ultimately liver transplantation. Although first-line clinical agents such as Ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) are available, serious side effects still exist. Therefore, pharmacologic treatment of cholestatic liver disease remains challenging. Here, we used a murine model of cholestasis treated with or without intraperitoneal injection of baicalein and found that baicalein could attenuate 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammatory response, ductular reaction, liver fibrosis, and bile acid metabolism disorders. Furthermore, the therapeutic effect of baicalein was hampered in the presence of Guggulsterone (GS), an Farnesoid X receptor (FXR) antagonist. These results indicated that baicalein alleviated DDC diet-induced cholestatic liver injury in an FXR-dependent manner.


Asunto(s)
Colestasis Intrahepática , Colestasis , Flavanonas , Animales , Ratones , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/tratamiento farmacológico , Colestasis/tratamiento farmacológico , Ácidos y Sales Biliares
5.
Int J Clin Pharmacol Ther ; 62(4): 162-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431829

RESUMEN

OBJECTIVE: To examine the mitochondrial protective effects of icariin, naringenin, kaempferol, and formononetin, potentially active agents in Bu-Shen-Jian-Pi formula (BSJP) identified using network pharmacology analysis. MATERIALS AND METHODS: Mitochondrial protection activity was determined using a hypoxia-reoxygenation in vitro model based on the neuroblastoma cell line SH-SY5Y and measurements of anti-ferroptotic activity. RESULTS: Icariin, naringenin, kaempferol, and formononetin showed mitochondrial protective activity involving diverse signaling pathways. The cytoprotective effects of formononetin depended on the inhibition of ferroptosis. Hypoxia-reoxygenation stimulation induced ferroptosis in SH-SY5Y cells. DISCUSSION: Ferroptosis is a key mechanism in nervous system diseases and is associated with hypoxia-reoxygenation injury. Naringenin and kaempferol were devoid of anti-ferroptotic activity. CONCLUSION: Evidence has been obtained showing that the core components: icariin, naringenin, kaempferol, and formononetin in BSJP formula have anti-hypoxic and mitochondrial protective activity of potential clinical importance in the treatment of amyotrophic lateral sclerosis and patients with symptoms of hypoxia.


Asunto(s)
Medicina Tradicional China , Neuroblastoma , Humanos , Quempferoles/farmacología , Línea Celular Tumoral , Farmacología en Red , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Oxidación-Reducción , Hipoxia/tratamiento farmacológico , Resultado del Tratamiento
6.
Artículo en Inglés | MEDLINE | ID: mdl-38546989

RESUMEN

Interactive image segmentation (IIS) has emerged as a promising technique for decreasing annotation time. Substantial progress has been made in pre-and post-processing for IIS, but the critical issue of interaction ambiguity, notably hindering segmentation quality, has been under-researched. To address this, we introduce AdaptiveClick - a click-aware transformer incorporating an adaptive focal loss (AFL) that tackles annotation inconsistencies with tools for mask-and pixel-level ambiguity resolution. To the best of our knowledge, AdaptiveClick is the first transformer-based, mask-adaptive segmentation framework for IIS. The key ingredient of our method is the click-aware mask-adaptive transformer decoder (CAMD), which enhances the interaction between click and image features. Additionally, AdaptiveClick enables pixel-adaptive differentiation of hard and easy samples in the decision space, independent of their varying distributions. This is primarily achieved by optimizing a generalized AFL with a theoretical guarantee, where two adaptive coefficients control the ratio of gradient values for hard and easy pixels. Our analysis reveals that the commonly used Focal and BCE losses can be considered special cases of the proposed AFL. With a plain ViT backbone, extensive experimental results on nine datasets demonstrate the superiority of AdaptiveClick compared to state-of-the-art methods. The source code is publicly available at https://github.com/lab206/AdaptiveClick.

7.
Int J Clin Pharmacol Ther ; 62(4): 155-161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38239147

RESUMEN

BACKGROUND: There is evidence that Bu-Shen-Jian-Pi (BSJP), a traditional Chinese medicine, has curative effects in patients suffering from amyotrophic lateral sclerosis (ALS), a progressive and potentially fatal hypoxic condition. OBJECTIVE: To identify biogenic components in BSJP extracts having potential pharmacological efficacy in ALS. MATERIALS AND METHODS: Biogenic components in BSJP and their potential pharmacological targets and signaling pathways in ALS were identified and assessed using network pharmacology/hub node analysis. RESULTS: Network pharmacology analysis identified icariin, naringenin, kaempferol, quercetin, and formononetin as core components in BSJP with potential activity involving mitochondrial protection in patients with ALS. CONCLUSION: Network pharmacology analysis proved to be a successful screening tool for obtaining information from scientific databases on the pharmacology of biogenic components in BSJP showing potential therapeutic activity in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Medicamentos Herbarios Chinos , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Medicina Tradicional China , Farmacología en Red , Resultado del Tratamiento , Busulfano , Transducción de Señal , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
8.
Curr Med Imaging ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258590

RESUMEN

BACKGROUND: Medical image registration plays an important role in several applications. Existing approaches using unsupervised learning encounter issues due to the data imbalance problem, as their target is usually a continuous variable. OBJECTIVE: In this study, we introduce a novel approach known as Unsupervised Imbalanced Registration, to address the challenge of data imbalance and prevent overconfidence while increasing the accuracy and stability of 4D image registration. METHODS: Our approach involves performing unsupervised image mixtures to smooth the input space, followed by unsupervised image registration to learn the continual target. We evaluated our method on 4D-Lung using two widely used unsupervised methods, namely VoxelMorph and ViT-V-Net. RESULTS: Our findings demonstrate that our proposed method significantly enhances the mean accuracy of registration by 3%-10% on a small dataset while also reducing the accuracy variance by 10%. CONCLUSION: Unsupervised Imbalanced Registration is a promising approach that is compatible with current unsupervised image registration methods applied to 4D images.

9.
Nat Commun ; 15(1): 168, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168065

RESUMEN

Endoplasmic reticulum (ER)-mitochondria contacts are critical for the regulation of lipid transport, synthesis, and metabolism. However, the molecular mechanism and physiological function of endoplasmic reticulum-mitochondrial contacts remain unclear. Here, we show that Mic19, a key subunit of MICOS (mitochondrial contact site and cristae organizing system) complex, regulates ER-mitochondria contacts by the EMC2-SLC25A46-Mic19 axis. Mic19 liver specific knockout (LKO) leads to the reduction of ER-mitochondrial contacts, mitochondrial lipid metabolism disorder, disorganization of mitochondrial cristae and mitochondrial unfolded protein stress response in mouse hepatocytes, impairing liver mitochondrial fatty acid ß-oxidation and lipid metabolism, which may spontaneously trigger nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice. Whereas, the re-expression of Mic19 in Mic19 LKO hepatocytes blocks the development of liver disease in mice. In addition, Mic19 overexpression suppresses MCD-induced fatty liver disease. Thus, our findings uncover the EMC2-SLC25A46-Mic19 axis as a pathway regulating ER-mitochondria contacts, and reveal that impairment of ER-mitochondria contacts may be a mechanism associated with the development of NASH and liver fibrosis.


Asunto(s)
Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés del Retículo Endoplásmico , Hígado/metabolismo , Mitocondrias/metabolismo , Cirrosis Hepática/patología , Retículo Endoplásmico/metabolismo
10.
IEEE Trans Image Process ; 33: 177-190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38055358

RESUMEN

Interactive image segmentation (IIS) has been widely used in various fields, such as medicine, industry, etc. However, some core issues, such as pixel imbalance, remain unresolved so far. Different from existing methods based on pre-processing or post-processing, we analyze the cause of pixel imbalance in depth from the two perspectives of pixel number and pixel difficulty. Based on this, a novel and unified Click-pixel Cognition Fusion network with Balanced Cut (CCF-BC) is proposed in this paper. On the one hand, the Click-pixel Cognition Fusion (CCF) module, inspired by the human cognition mechanism, is designed to increase the number of click-related pixels (namely, positive pixels) being correctly segmented, where the click and visual information are fully fused by using a progressive three-tier interaction strategy. On the other hand, a general loss, Balanced Normalized Focal Loss (BNFL), is proposed. Its core is to use a group of control coefficients related to sample gradients and forces the network to pay more attention to positive and hard-to-segment pixels during training. As a result, BNFL always tends to obtain a balanced cut of positive and negative samples in the decision space. Theoretical analysis shows that the commonly used Focal and BCE losses can be regarded as special cases of BNFL. Experiment results of five well-recognized datasets have shown the superiority of the proposed CCF-BC method compared to other state-of-the-art methods. The source code is publicly available at https://github.com/lab206/CCF-BC.

11.
J Ethnopharmacol ; 319(Pt 3): 117330, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37863399

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) holds that non-alcoholic fatty liver disease (NAFLD) belong to the category of "thoracic fullness". Polygonum perfoliatum L. (PPL), a Chinese medicinal herb with the effect of treating thoracic fullness, was recorded in the ancient Chinese medicine book "Supplements to Compendium of Materia Medica". It has been used since ancient times to treat NAFLD. However, the underlying mechanism and active components of PPL against NAFLD remains unclear. AIM OF STUDY: To identify the main active components and the anti-NAFLD mechanism of PPL. MATERIALS AND METHODS: Network pharmacology, UPLC/QE-HFX analysis, and molecular docking were employed to determine the main bioactive compounds and key targets of PPL for the NAFLD treatment. This effect was further validated with administration of PPL (200 mg/kg and 400 mg/kg) to NAFLD model mice for 5 weeks. Systemic signs of obesity, biochemical parameters, and histological changes were characterized. Immunohistochemistry, western blot, and PCR analysis were conducted to elucidate the mechanistic pathways through which PPL exerts its effects. RESULTS: Network pharmacology revealed 77 crossover genes between the PPL and NAFLD. The kyoto encyclopedia of genes and genomes (KEGG) analysis show that PPL treat NAFLD mainly regulating glucose-lipid metabolism mediated by PI3K/AKT signal pathway. The Gene Ontology (GO) enrichment analysis show that PPL treat NAFLD mainly regulating inflammation mediated by cytokine-mediated signaling pathway. In accordance with the anticipated outcomes, administration of PPL in a dose-dependent manner effectively mitigated insulin resistance induced by a high-fat diet (HFD) by activating the PI3K/AKT signaling pathway. Histopathological evaluation corroborated the hepatoprotective effects of PPL against HFD-induced hepatic steatosis, as evidenced by the inhibition of de novo fatty acid synthesis and promotion of fatty acid ß-oxidation (FAO). Further research showed that PPL blocked cytokine production by inhibiting the NF-κB pathway, thereby reducing immune cell infiltration. Furthermore, five flavonoids from PPL, including quercetin, baicalein, galangin, apigenin, and genistein were identified as key compounds based on ingredient-target-pathway network analysis. Molecular docking show that these active compounds have favorable binding interactions with AKT1, PIK3R1, and MAPK1, further confirming the impact of PPL on the PI3K/AKT pathway. CONCLUSIONS: Through the combination of network pharmacology prediction and experimental validation, this work determined that therapeutic effect of PPL on NAFLD, and such protective effect is mediated by activating PI3K/AKT-mediated glucolipid metabolism pathway and hepatic NF-κB-mediated cytokine signaling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Polygonum , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , FN-kappa B , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ácidos Grasos , Citocinas
12.
IEEE Trans Image Process ; 32: 5852-5864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883289

RESUMEN

Point-based 3D detection approaches usually suffer from the severe point sampling imbalance problem between foreground and background. We observe that prior works have attempted to alleviate this imbalance by emphasizing foreground sampling. However, even adequate foreground sampling may be extremely unbalanced between nearby and distant objects, yielding unsatisfactory performance in detecting distant objects. To tackle this issue, this paper first proposes a novel method named Distant Object Augmented Set Abstraction and Regression (DO-SA&R) to enhance distant object detection, which is vital for the timely response of decision-making systems like autonomous driving. Technically, our approach first designs DO-SA with novel distant object augmented farthest point sampling (DO-FPS) to emphasize sampling on distant objects by leveraging both object-dependent and depth-dependent information. Then, we propose distant object augmented regression to reweight all the instance boxes for strengthening regression training on distant objects. In practice, the proposed DO-SA&R can be easily embedded into the existing modules, yielding consistent performance improvements, especially on detecting distant objects. Extensive experiments are conducted on the popular KITTI, nuScenes and Waymo datasets, and DO-SA&R demonstrates superior performance, especially for distant object detection. Our code is available at https://github.com/mikasa3lili/DO-SAR.

13.
J Ethnopharmacol ; 314: 116633, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207878

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fu-Zheng-Tong-Luo (FZTL) formula is a Chinese herbal prescription which is used to treat idiopathic pulmonary fibrosis (IPF). We previously reported that the FZTL formula could improve IPF injury in rats; however, the mechanism remains unelucidated. AIM OF THE STUDY: To elucidate the effects and mechanisms of the FZTL formula on IPF. MATERIALS AND METHODS: The bleomycin-induced pulmonary fibrosis rat model and transforming growth factor-ß-induced lung fibroblast model were used. Histological changes and fibrosis formation were detected in the rat model after treatment with the FZTL formula. Furthermore, the effects of the FZTL formula on autophagy and lung fibroblast activation were determined. Moreover, the mechanism of FZTL was explored using transcriptomics analysis. RESULTS: We observed that FZTL alleviated IPF injury in rats and inhibited inflammatory responses and fibrosis formation in rats. Moreover, it promoted autophagy and inhibited lung fibroblast activation in vitro. Transcriptomics analysis revealed that FZTL regulates the Janus kinase 2 (JAK)/signal transducer and activator of the transcription 3 (STAT) signaling pathway. The JAK2/STAT3 signaling activator interleukin 6 inhibited the anti-fibroblast activation effect of the FZTL formula. Combined treatment with the JAK2 inhibitor (AZD1480) and autophagy inhibitor (3-methyladenine) did not enhance the antifibrotic effect of FZTL. CONCLUSIONS: The FZTL formula can inhibit IPF injury and lung fibroblast activation. Its effects are mediated via the JAK2/STAT3 signaling pathway. The FZTL formula may be a potential complementary therapy for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Janus Quinasa 2 , Ratas , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Transducción de Señal , Fibrosis , Bleomicina , Fluorouracilo/farmacología
14.
Front Pharmacol ; 14: 1016129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033635

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a predominant contributor to end-stage liver disease in the forthcoming decades. Polygonum perfoliatum L. (PPL) is an herbal medicine with anti-lipid peroxidation and anti-inflammatory properties. However, detailed hepatoprotective effects of PPL against NAFLD and its underlying mechanisms are not fully understood. Here, we found that PPL protects against high fat diet (HFD)-induced hepatic steatosis, lipid peroxidation, and glucose-lipid metabolism dysfunction in NAFLD mice. We therefore performed a label-free quantitative proteomic profiling analysis to determine the effect of PPL treatment on liver tissue proteomics and identified that activated PPARs/CPT1A/CPT2-mediated hepatic fatty acid ß-oxidation (FAO) process was significantly altered. In vitro treatment of hepatocytes with PPL confirmed this altered process and FAO inhibitor etomoxir (ETO) attenuated the lipid-lowering activity of PPL in hepatocytes. Ultra-high-performance liquid chromatography/Q Exactive-HFX (UPLC/QE-HFX) was used to determine the material basis of anti-NAFLD activity of PPL. Our results have demonstrated the efficacy and potential mechanisms of PPL as an effective pharmacological therapy of NAFLD.

15.
J Inflamm Res ; 16: 1595-1610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37092126

RESUMEN

Background and Purpose: Current pharmacological approaches to prevent hepatic ischemia/reperfusion injury (IRI) are limited. To mitigate hepatic injury, more research is needed to improve the understanding of hepatic IRI. Depending on traditional Chinese medicine (TCM) theory, acupuncture therapy has been used for the treatment of ischemic diseases with good efficacy. However, the efficacy and mechanism of acupuncture for hepatic IRI are still unclear. Methods: Blood provided to the left and middle lobe of mice livers was blocked with a non-invasive clamp and then the clamps were removed for reperfusion to establish a liver IRI model. Quantitative proteomics approach was used to evaluate the impact of EA pretreatment on liver tissue proteome in the IRI group. Serum biochemistry was used to detect liver injury, inflammation, and oxidative stress levels. H&E staining and TUNEL staining were used to detect hepatocyte injury and apoptosis. Immunohistochemistry and ELISA were used to detect the degree of inflammatory cell infiltration and the level of inflammation. The anti-inflammatory and antioxidant capacities were detected by Quantitative RT-PCR and Western blotting. Results: We found that EA at Zusanli (ST36) has a protective effect on hepatic IRI in mice by alleviating oxidative stress, hepatocyte death, and inflammation response. Nuclear factor E2-related factor 2 (Nrf2) as a crucial target was regulated by EA and was then successfully validated. The Nrf2 inhibitor ML385 and cervical vagotomy eliminated the protective effect in the EA treatment group. Conclusion: This study firstly demonstrated that EA pretreatment at ST36 significantly ameliorates hepatic IRI in mice by inhibiting oxidative stress via activating the Nrf2 signal pathway, which was vagus nerve-dependent.

16.
Int J Biol Macromol ; 235: 123805, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36863669

RESUMEN

Photonic crystal materials based on cellulose nanocrystals (CNC), which are environmentally responsive and green, have attracted widespread attention. To overcome the brittleness of CNC films, many researchers have explored functional additives to improve their performance. In this study, a new green deep eutectic solvents (DESs) and an amino acid-based natural deep eutectic solvents (NADESs) were introduced into CNC suspensions for the first time, and hydroxyl-rich small molecules (glycerol, sorbitol) and polymers (polyvinyl alcohol, polyethylene glycol) were coassembled with the DESs and NADESs to form three-component composite films. The CNC/G/NADESs-Arg three-component film reversibly changed color from blue to crimson as the relative humidity rose from 35 % to 100 %; additionally, the elongation at break increased to 3.05 %, and the Young's modulus decreased to 4.52 GPa. The hydrogen bond network structure provided by trace amounts of the DESs or NADESs not only improved the mechanical properties of the composite films but also increased their water absorption capacities without destroying their optical activities. This allows for the development of more stable CNC films and creates potential for biological applications in the future.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Disolventes Eutécticos Profundos , Humedad , Nanopartículas/química , Polímeros , Solventes/química
17.
Opt Express ; 31(5): 7900-7906, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859911

RESUMEN

InGaAs/AlGaAs multiple quantum well lasers grown on silicon (001) by molecular beam epitaxy have been demonstrated. By inserting InAlAs trapping layers into AlGaAs cladding layers, misfit dislocations easily located in the active region can be effectively transferred out of the active region. For comparison, the same laser structure without the InAlAs trapping layers was also grown. All these as-grown materials were fabricated into Fabry-Perot lasers with the same cavity size of 20 × 1000 µm2. The laser with trapping layers achieved a 2.7-fold reduction in threshold current density under pulsed operation (5 µs-pulsed width, 1%-duty cycle) compared to the counterpart, and further realized a room-temperature continuous-wave lasing with a threshold current of 537 mA which corresponds to a threshold current density of 2.7 kA/cm2. When the injection current reached 1000 mA, the single-facet maximum output power and slope efficiency were 45.3 mW and 0.143 W/A, respectively. This work demonstrates significantly improved performances of InGaAs/AlGaAs quantum well lasers monolithically grown on silicon, providing a feasible solution to optimize the InGaAs quantum well structure.

18.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36573491

RESUMEN

Precisely predicting the drug-drug interaction (DDI) is an important application and host research topic in drug discovery, especially for avoiding the adverse effect when using drug combination treatment for patients. Nowadays, machine learning and deep learning methods have achieved great success in DDI prediction. However, we notice that most of the works ignore the importance of the relation type when building the DDI prediction models. In this work, we propose a novel R$^2$-DDI framework, which introduces a relation-aware feature refinement module for drug representation learning. The relation feature is integrated into drug representation and refined in the framework. With the refinement features, we also incorporate the consistency training method to regularize the multi-branch predictions for better generalization. Through extensive experiments and studies, we demonstrate our R$^2$-DDI approach can significantly improve the DDI prediction performance over multiple real-world datasets and settings, and our method shows better generalization ability with the help of the feature refinement design.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Aprendizaje Automático , Descubrimiento de Drogas
19.
Gene ; 851: 146973, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36306943

RESUMEN

BACKGROUND: Yin-chen Wu-ling Powder (YWP) has potential therapeutic effects on cholestatic liver disease (CLD), however, its active compounds and conceivable mechanism are as yet indistinct. METHODS: The network pharmacology and gene function annotation examined the multiple active ingredients, potential targets, and possible mechanisms of YWP in CLD treatment. Then the molecular docking reassured the reliability of the core compounds including the key genes and farnesoid X receptor (FXR). Finally, The Mdr2-/- mice were used to test the effect and mechanism of YWP against CLD. RESULTS: The network analysis identified nine main active ingredients, including quercetin, capillarisin, eupalitin, isorhamnetin, skrofulein, genkwanin, cerevisterol, gederagenin, and sitosterol. The PPI network predicted the ten hub genes involved were AKT1, MAPK1, MAPK14, IL6, RXRA, ESR1, IL10, NCOA1, CAV1, and EGFR. The KEGG and GO analysis showed that YWP might contribute to CLD treatment through the PI3K/Akt and MAKP signalings to manage pathological reactions, for instance, inflammatory responses. The molecular docking displayed a functional similarity among the core compounds with ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) on the effects on AKT1, MAPK1, MAPK14, RXRA, and ESR, and the affinity to FXR. In addition, the YWP could significantly attenuate hepatic injury and improve inflammatory response in Mdr2-/- mice. The mechanism exploration showed that YWP mainly decreased inflammatory response by inhibiting AKT/P38MAPK signaling. CONCLUSION: This study firstly revealed the multiple active ingredients, potential targets, and possible mechanism of YWP to treat CLD based on network pharmacology Analysis and molecular docking. YWP could alleviate cholestasis in Mdr2-/- mice by impairing inflammation via inhibiting AKT/P38MAPK Signaling.


Asunto(s)
Colestasis , Medicamentos Herbarios Chinos , Hepatopatías , Proteína Quinasa 14 Activada por Mitógenos , Ratones , Animales , Polvos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Reproducibilidad de los Resultados , Colestasis/tratamiento farmacológico , Colestasis/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hepatopatías/tratamiento farmacológico
20.
Front Plant Sci ; 14: 1303667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169626

RESUMEN

Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...