Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Integr Cancer Ther ; 23: 15347354241247061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641964

RESUMEN

To investigate the effect of Jiedu Xiaozheng Yin (JXY) on the polarization of macrophages in colitis-associated colon cancer (CAC). An orthotopic model of CAC was established to monitor changes in the pathological state of mice. Colon length, number of colon tumors were recorded, and indices for liver, spleen, and thymus were calculated. Hematoxylin and eosin (H&E) staining was employed to observe intestinal mucosal injury and tumor formation. Immunohistochemistry (IHC) staining was utilized to investigate the effect of JXY on M1 and M2 polarization of macrophages in the colonic mucosa of CAC mice. For in vitro experiments, RT-qPCR (Reverse Transcription-quantitative PCR) and flow cytometry were used to observe the effect of JXY on various M1-related molecules such as IL-1ß, TNF-α, iNOS, CD80, CD86, and its phagocytic function as well as M2-related molecules including Arg-1, CD206, and IL-10. Subsequently, after antagonizing the TLR4 pathway with antagonists (TAK242, PDTC, KG501, SR11302, LY294002), the expression of IL-6, TNF-α, iNOS, and IL-1ß mRNA were detected by RT-qPCR. In vivo experiments, the results showed that JXY improved the pathological condition of mice in general. And JXY treatment decreased the shortening of colon length and number of tumors as compared to non-treated CAC mice. Additionally, JXY treatment improved the lesions in the colonic tissue and induced a polarization of intestinal mucosal macrophages towards the M1 phenotype, while inhibiting polarization towards the M2 phenotype. In vitro experiments further confirmed that JXY treatment promoted the activation of macrophages towards the M1 phenotype, leading to increased expression of IL-1ß, TNF-α, iNOS, CD80, CD86, as well as enhanced phagocytic function. JXY treatment concomitantly inhibited the expression of M2-phenotype related molecules Arginase-1 (Arg-1), CD206, and IL-10. Furthermore, JXY inhibited M1-related molecules such as IL-6, TNF-α, iNOS, and IL-1ß after antagonizing the TLR4 pathway. Obviously, JXY could exhibit inhibitory effects on the development of colon tumors in mice with CAC by promoting M1 polarization through TLR4-mediated signaling and impeding M2 polarization of macrophages.


Asunto(s)
Neoplasias Asociadas a Colitis , Medicamentos Herbarios Chinos , Macrófagos , Animales , Ratones , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fenotipo , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
ACS Pharmacol Transl Sci ; 6(12): 1817-1828, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093845

RESUMEN

Although the oncogenic roles of regulator of G protein signaling 20 (RGS20) and its upstream microRNAs (miRNAs) have been reported, their involvement in hepatocellular carcinoma (HCC) remains unexplored. We utilized the starBase, miRDB, TargetScan, and mirDIP databases, along with a dual-luciferase reporter assay and cDNA chip analysis to identify miRNAs targeting RGS20. miR-204-5p was selected for further experiments to confirm its direct targeting and downregulation of the RGS20 expression. To study the miR-204-5p/RGS20 axis in HCC, RGS20 and miR-204-5p were increased in PLC/PRF/5/Hep3B cells, and the viability, hyperplasia, apoptosis, cell cycle, and invasion/migration of the cells were assessed. RGS20 exhibited optimism, while miR-204-5p exhibited pessimism in tumors. miR-204-5p directly targeted RGS20 and downregulated its expression, whereas high RGS20 expression indicated a poor prognosis. Transfection of miR-204-5p inhibited the hyperplasia, migration, and invasion of HCC cells, but promoted apoptosis and influenced the levels of cyclin-dependent kinase 2 (CDK2), cyclin E1, B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3/8. These effects were reversed by overexpression of RGS20. We recognized miR-204-5p as an upstream regulator targeting RGS20, thereby inhibiting HCC progression by downregulating RGS20 expression. RGS20 may prove to be a potential target for HCC treatment, and miR-204-5p might seem like to be a potential miRNA in gene therapy.

5.
Zhen Ci Yan Jiu ; 48(12): 1249-1257, 2023 Dec 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38146248

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Zusanli"(ST36) on intestinal mucosal damage, intestinal mucosal oxidative stress injury and apoptosis induced by 5-fluorouraeil (5-FU) chemotherapy in colorectal cancer-bearing mice. METHODS: Thirty male BALB/c mice were randomly divided into normal control, colorectal cancer (CT26), 5-FU, non-acupoint and ST36 groups, with 6 mice in each group. Except for those of the normal control group, mice of the remaining 4 groups received subcutaneous implantation of colorectal CT26 cell suspension (0.1 mL) in the right armpit for establishing colorectal cancer model. Rats of the 5-FU group, non-acupoint group and ST36 group were given with 5 mg/mL 5-FU solution once every 3 days for a total of 21 days. For mice of the non-acupoint group and ST36 group, EA (2 Hz, 1-2 mA) was applied to bilateral ST36 or non-acupoints (the bilateral sunken spots about 3 mm to the midpoint between the tail root and the anus) for 5 min after each intraperitoneal infusion of 5-FU, once every 3 days, for a total of 21 days. After the intervention, the diarrhea index was assessed. The length of colon (from the endpoint of cecum to the anal orifice) was measured. Histopathological changes of colonic mucosa were observed by H.E. staining, and the length of colonic villi was measured. The content of malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of colonic tissue were detected by thibabituric acid, xanthine oxidase and colorimetric method, respectively. The rate of cell apoptosis in the colonic tissue was measured by TUNEL assay. The positive expressions of Bax and Bcl-2 in colonic tissue were determined by immunohistochemistry. RESULTS: The CT26 model group didn't show any significant changes in the diarrhea index, colon length, colon villus length, MDA content, SOD and GSH-Px activities, colonic cell apoptosis rate, and Bax and Bcl-2 expression levels when compared with the normal group. Compared with the CT26 group, the 5-FU group had a remarkable increase in the diarrhea index, MDA content, colonic cell apoptosis rate and Bax expression level (P<0.01, P<0.05), and a marked decrease in the colon length, colon villus length, SOD and GSH-Px activities and Bcl-2 expression level (P<0.01), suggesting the side effects of administration of 5-FU. Compared with the 5-FU group, the diarrhea index, MDA content, colonic cell apoptosis rate and Bax expression level were markedly decreased (P<0.05, P<0.01) and those of the colon length, colon villus length, SOD and GSH-Px activities and Bcl-2 expression level were obviously increased (P<0.01) in the ST36 group. Compared with the 5-FU group, the non-acupoint group also had an increase in the colon villus length, SOD and GSH-Px activities (P<0.01, P<0.05) and a decrease in the cell apoptosis rate (P<0.01). CONCLUSIONS: EA at ST36 has a positive effect in reducing intestinal mucosal damage induced by 5-FU chemotherapy in cancer-bearing mice, which may be related to its function in relieving oxidative stress injury and inhibiting apoptosis of colonic tissue.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Electroacupuntura , Ratas , Masculino , Ratones , Animales , Proteína X Asociada a bcl-2/metabolismo , Puntos de Acupuntura , Estrés Oxidativo , Apoptosis , Superóxido Dismutasa/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Diarrea , Fluorouracilo/efectos adversos
6.
Biomed Pharmacother ; 166: 115387, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37643486

RESUMEN

Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Administration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1ß, IFN-γ, TNF-α) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-κB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-κB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotgalicoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclostridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-κB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.


Asunto(s)
Microbiota , FN-kappa B , Animales , Ratones , Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , ARN Ribosómico 16S , Proteínas Adaptadoras Transductoras de Señales
7.
Cancer Gene Ther ; 30(9): 1260-1273, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286729

RESUMEN

lncRNA ANRIL is an oncogene, however the role of ANRIL in the regulation of colorectal cancer on human lymphatic endothelial cells (HLECs) is remain elusive. Pien Tze Huang (PZH, PTH) a Tradition Chinese Medicine (TCM) as an adjunctive medication could inhibit the cancer metastasis, however the mechanism still uncovering. We used network pharmacology, subcutaneous and orthotopic transplanted colorectal tumors models to determine the effect of PZH on tumor metastasis. Differential expressions of ANRIL in colorectal cancer cells, and stimulating the regulation of cancer cells on HLECs by culturing HLECs with cancer cells' supernatants. Network pharmacology, transcriptomics, and rescue experiments were carried out to verify key targets of PZH. We found PZH interfered with 32.2% of disease genes and 76.7% of pathways, and inhibited the growth of colorectal tumors, liver metastasis, and the expression of ANRIL. The overexpression of ANRIL promoted the regulation of cancer cells on HLECs, leading to lymphangiogenesis, via upregulated VEGF-C secretion, and alleviated the effect of PZH on inhibiting the regulation of cancer cells on HLECs. Transcriptomic, network pharmacology and rescue experiments show that PI3K/AKT pathway is the most important pathway for PZH to affect tumor metastasis via ANRIL. In conclusion, PZH inhibits the regulation of colorectal cancer on HLECs to alleviate tumor lymphangiogenesis and metastasis by downregulating ANRIL dependent PI3K/AKT/VEGF-C pathway.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas c-akt , Humanos , Apoptosis , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas , Factor C de Crecimiento Endotelial Vascular/metabolismo
8.
Microbiol Spectr ; 10(6): e0167722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36222691

RESUMEN

5-Fluorouracil (5-FU), irinotecan (CPT-11), oxaliplatin (L-OHP), and calcium folinate (CF) are widely used chemotherapeutic drugs to treat colorectal cancer. However, chemotherapeutic use is often accompanied by intestinal inflammation and gut microbiota disorder. Changes in gut microbiota may destroy the intestinal barrier, which contributes to the severity of intestinal injury. However, intestinal injury and gut microbiota disorder have yet to be compared among 5-FU, CPT-11, L-OHP, and CF in detail, thereby limiting the development of targeted detoxification therapy after chemotherapy. In this study, a model of chemotherapy-induced intestinal injury in tumor-bearing mice was established by intraperitoneally injecting chemotherapeutic drugs at a clinically equivalent dose. 16S rRNA gene sequencing was used to detect gut microbiota. We found that 5-FU, CPT-11, and l-OHP caused intestinal injury, inflammatory cytokine (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-1ß [IL-1ß], and IL-6) secretion, and gut microbiota disorder. We established a complex but clear network between the pattern of changes in gut microbiota and degree of intestinal damage induced by different chemotherapeutic drugs. L-OHP caused the most severe damage in the intestine and disorder of the gut microbiota and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v.1.0) showed that the microbiota disorder pattern induced by 5-FU, CPT-11, and L-OHP was related to the NOD-like signaling pathway. Therefore, we detected the protein expression of the NOD/RIP2/NF-κB signaling pathway and found that L-OHP most activated this pathway. Redundancy analysis/canonical correlation analysis (RDA/CCA) revealed that Bifidobacterium, Akkermansia, Allobaculum, Catenibacterium, Mucispirillum, Turicibacter, Helicobacter, Proteus, Escherichia Shigella, Alloprevotealla, Vagococcus, Streptococcus, and "Candidatus Saccharimonas" were highly correlated with the NOD/RIP2/NF-κB signaling pathway and influenced by chemotherapeutic drugs. IMPORTANCE Chemotherapy-induced intestinal injury limits the clinical use of drugs. Intestinal injury involves multiple signaling pathways and gut microbiota disruption. Our results suggested that the degree of intestinal injury caused by different drugs of the first-line colorectal chemotherapy regimen is related to the pattern of changes in microbiota. The activation of the NOD/RIP2/NF-κB signaling pathway was also related to the pattern of changes in microbiota. l-OHP caused the most severe damage to the intestine and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Thirteen bacterial genera were related to different levels of intestinal injury and correlated with the NOD/RIP2/NF-κB pathway. Here, we established a network of different chemotherapeutic drugs, gut microbiota, and the NOD/RIP2/NF-κB signaling pathway. This study likely provided a new basis for further elucidating the mechanism and clinical treatment of intestinal injury caused by chemotherapy.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Enfermedades Intestinales , Animales , Ratones , Antineoplásicos/efectos adversos , Fluorouracilo/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Intestinales/inducido químicamente , Irinotecán/efectos adversos , FN-kappa B/metabolismo , Oxaliplatino/efectos adversos , Filogenia , ARN Ribosómico 16S/genética , Transducción de Señal
9.
Biomed Pharmacother ; 154: 113630, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058147

RESUMEN

Gastric cancer (GC) is one of the most common gastrointestinal malignancies in the world. Growing evidence emphasizes the critical role of long non-coding RNA (lncRNA) in GC tumorigenesis. The aim of the research was to elucidate the effect and mechanism of Babao Dan (BBD) on lymphangiogenesis of GC in vitro and in vivo via lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis. The present study investigated BBD significantly decreased the expression of lncRNA-ANRIL and VEGF-C in GC cells (AGS, BGC823, and MGC80-3) by using real-time quantitative polymerasechain reaction (RT-qPCR) and the secretion and expression of VEGF-C by (enzyme linked immunosorbent assay) ELISA and western blot (WB). BBD significantly inhibited the tumor xenograft of GC growth and the expression of lncRNA-ANRIL, VEGF-C, VEGFR-3 and LYVE-1 in vivo. BBD reduced serum VEGF-C level. In vitro, BBD inhibited the tube formation and decreased the cell viability, proliferation and migration of HLECs by using tube formation, MTT, Hoechst and Transwell assays. In addition, WB assay found that BBD decreased the expression levels of VEGF-C, VEGFR-3, matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9), and RT-qPCR assay found that the mRNA expression levels of lncRNA-ANRIL, VEGF-C, VEGFR-3, MMP-2, MMP-9, CDK4, Cyclin D1, and Bcl-2 were down-regulated, and the expression of p21 and Bax were increased. Taken together, these results demonstrated that BBD inhibited lymphangiogenesis of GC in vitro and in vivo via the lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Línea Celular Tumoral , Medicamentos Herbarios Chinos , Humanos , Linfangiogénesis/genética , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , ARN Largo no Codificante/genética , ARN Largo no Codificante/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Theranostics ; 12(14): 6088-6105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168633

RESUMEN

Colorectal cancer (CRC), mostly categorized as a low immunogenic microsatellite-stable phenotype bearing complex immunosuppressive tumor microenvironment (TME), is highly resistant to immunotherapy. Seeking safe and efficient alternatives aimed at modulating tumor immunosuppressive TME to improve outcome of CRC is highly anticipated yet remains challenging. Methods: Enlightened from the drug complementary art in traditional Chinese medicine, we designed a self-assembled nanomedicine (termed LNT-UA) by the natural active ingredients of ursolic acid (UA) and lentinan (LNT) through a simple nano-precipitation method, without any extra carriers, for CRC immunotherapy. Results: UA induces immunogenic cell death (ICD), while LNT further promotes dendritic cell (DC) maturation and repolarizes tumor-associated macrophage (TAM) from a protumorigenic M2 to an antitumor M1 phenotype. Co-delivery of UA and LNT by LNT-UA effectively reshapes the immunosuppressive TME and mobilizes innate and adaptive immunity to inhibit tumor progression in the CT26 CRC tumor model. Following the principle of integrative theoretical system of traditional Chinese medicine (TCM) on overall regulation, the further combination of LNT-UA and anti-CD47 antibody (αCD47) would reinforce the antitumor immunity by promoting phagocytosis of dying tumor cells and tumor-associated antigens (TAAs), leading to effective suppression of both primary and distant tumor growth with 2.2-fold longer of median survival time in the bilateral tumor model. Most notably, this combination effect is also observed in the spontaneous CRC model induced by chemical carcinogens, with much less and smaller size of tumor nodules after sequential administration of LNT-UA and αCD47 through gavage and intraperitoneal injection, respectively. Conclusions: This study provides a promising self-assembled traditional Chinese nanomedicine to improve immunotherapy for CRC, which might be applicable for future clinical translation.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Carcinógenos/farmacología , China , Neoplasias Colorrectales/genética , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Lentinano/farmacología , Nanomedicina , Ácido Oleanólico/análogos & derivados , Ácido Ursólico
11.
Artículo en Inglés | MEDLINE | ID: mdl-35280511

RESUMEN

Qingjie Fuzheng granules (QFG) exert an anticancer effect against colorectal cancers (CRC). However, the pharmacological molecular mechanisms are still unclear. This study was aimed to establish a simple method to predict targets of QFG against CRC by the network pharmacology strategy. 461 compounds and 1559 targets in QFG were enriched by BATMAN-TCM. 21 of the common targets were obtained by the groups of "Jun," "Chen," "Zuo," and "Shi" medicine in QFG. The enrichment analyses of GO functional terms, KEGG pathway, and OMIM/TTD diseases displayed the targets in the different and complementary effects of four functional medicines in QFG. Then, 613 differential targets for QFG in CRC were identified. GO functional terms and KEGG pathway analyses showed that QFG regulated the inflammatory function and lipid metabolic process. There were also targets that played a role in the binding to the receptors in membranes, in the activation of the transportation signal, and provided pain relief by regulation of the neural related pathways. Next, the protein-protein interaction network was analyzed, and the levels of the predicted targets in CRC primary tumor were explored, and 7 candidate targets of QFG against CRC were obtained. Furthermore, with real-time PCR and enzyme-linked immunosorbent assay (ELISA) analysis, downregulation of dopamine D2 receptor (DRD2) and interleukin-6 (IL-6), and upregulation of interleukin-10 (IL-10) were identified following the treatment of QFG. At last, the survival and prognosis of the potential targets of QFG in CRC patients were analyzed by GenomicScape, and IL-6 was suggested to be an index for the regulation of QFG in CRC. These results might elucidate the possible antitumor mechanism of QFG and highlight the candidate therapeutic targets and the application direction in clinical treatment for QFG.

12.
Open Med (Wars) ; 17(1): 304-316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233466

RESUMEN

Glypican-2 (GPC2) has been reported to promote tumor progression through metabolic pathways. However, the role of GPC2 in colon adenocarcinoma (COAD) remains to be further investigated. This study was designed to evaluate the role of GPC2 in COAD. Based on patients with complete clinical information and GPC2 expression from the Cancer Genome Atlas-COAD database, we found that GPC2 mRNA was highly expressed in COAD tissues, which was associated with poor prognosis and tumornode-metastasis (TNM) stage. The predicted survival probability based on GPC2 mRNA expression and TNM stage was in good agreement with the observed survival probability. Furthermore, the genes coexpressed with GPC2 in COAD tissues were significantly enriched in basal cell carcinoma, Notch signaling pathway, and Hedgehog signaling pathway. After GPC2 was decreased through transfecting short hairpin RNA of GPC2 into HCT-8 and SW620 cells, cell cycle was arrested in G0/G1 phase, proliferation was decreased, apoptosis was increased, and migration and invasion were repressed. In conclusion, decreasing GPC2 significantly inhibited proliferation, migration, and invasion, and enhanced apoptosis, which implied that GPC2 can be considered a promising therapeutic target of COAD in the future.

13.
Chin J Integr Med ; 28(11): 1000-1006, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33420580

RESUMEN

OBJECTIVE: To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism. METHODS: A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/ß-catenin pathway (Wnt3, LRP5, ß-catenin, c-Myc, LRG5 and CD44). RESULTS: BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/ß -catenin mediators such as Wnt3, LRP5, ß-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01). CONCLUSIONS: BBD attenuates the adverse effects induced by 5-FU via Wnt/ß-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.


Asunto(s)
Antineoplásicos , Mucositis , Animales , Masculino , Ratones , Antineoplásicos/uso terapéutico , beta Catenina/metabolismo , Diarrea/tratamiento farmacológico , Fluorouracilo/farmacología , Mucosa Intestinal , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/metabolismo , Pentobarbital/metabolismo , Pentobarbital/farmacología , Pentobarbital/uso terapéutico , Antígeno Nuclear de Célula en Proliferación/metabolismo , Solución Salina
14.
Artículo en Inglés | MEDLINE | ID: mdl-34887935

RESUMEN

Qingjie Fuzheng granule (QFG) is a traditional Chinese medicinal formula used extensively as an alternative medicine for cancer treatment, including colorectal cancer (CRC). But its pathological mechanism in CRC is unclear. To study antitumor treatment effects and mechanisms of QFG, we established a CRC HCT-116 xenograft mouse model and assessed QFG on EMT and autophagy progression in vivo. The mice were randomly divided into 2 groups (n = 10 each group) and treated with intragastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight was measured every other day with electronic balance. At the end of the treatment, the tumor weight was measured. Immunohistochemical (IHC) and western blot (WB) assay were used to detect the expression level of E-cadherin, N-cadherin, vimentin, and TWIST1 to evaluate the effect of QFG on tumor cell EMT progression. IHC and WB assay were also used to detect the expression level of beclin-1, LC3-II, and p62 to evaluate the effect of QFG on tumor cell autophagy progression. Furthermore, the expression level of relative proteins in mTOR pathway was detected by WB assay to investigate the mechanism of QFG effect on CRC. We discovered that QFG inhibited the rise of tumor weight while it had no effect on mice body weight, which proved that QFG could inhibit CRC growth progression without significant side effects in vivo. In addition, QFG treatment inhibited EMT and induced autophagy progression in CRC tumor cells, including that QFG upregulated the expression of E-cadherin, beclin-1, and LC3-II, but downregulated the expression of N-cadherin, vimentin, TWIST1, and p62. And, QFG decreased the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, but increased the ratio of p-AMPK/AMPK. All findings from this research proved that QFG can induce autophagy and inhibit EMT progression in CRC via regulating the mTOR signaling pathway.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34306145

RESUMEN

Multidrug resistance (MDR) is a critical reason for cancer chemotherapy failure. Babaodan (BBD) is a famous traditional Chinese patent medicine reported to have antigastric cancer activity. However, the roles and molecular mechanisms of the reversal of MDR of gastric cancer by BBD have not been well described until now. Therefore, the purpose of this study was to elucidate further the role of BBD in reversing the MDR of gastric cancer cells and its specific regulatory mechanism via in vitro experiments. To verify our results, MTT, Doxorubicin (DOX) staining, Rhodamin123 (Rho123) staining, DAPI staining, Annexin V-FITC, propidium iodide (PI), Cyto-ID, and western blot assays were performed. To determine whether BBD triggers apoptosis and autophagy through the PI3K/AKT/mTOR signaling, we also applied 3-methyladenine (3-MA), chloroquine (CQ), and 740Y-P (an activator of PI3K). The results showed that BBD reversed the MDR and induced apoptosis and autophagy of SGC7901/DDP cells. Pathway analyses suggested BBD inhibits PI3K/AKT/mTOR pathway activity and subsequent apoptosis-autophagy induction. Inhibition of autophagy with 3-MA and chloroquine (CQ) was performed to confirm that BBD promoted autophagy. PI3K agonist, 740Y-P, further verified BBD inhibition of PI3K/AKT/mTOR pathway activation. In conclusion, BBD may reverse the MDR of gastric cancer cells, induce apoptosis, and promote autophagy via inactivation of the PI3K/AKT/mTOR signaling pathway.

16.
J Pharm Biomed Anal ; 204: 114273, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34304010

RESUMEN

Ba-Bao-Dan (BBD) is a well-known Traditional Chinese medicine (TCM) prescription in China. It was first formulated in approximately 1555 AD. As one of the National Protected TCM, it is widely used to treat jaundice, viral hepatitis, cholecystitis, acute urinary tract infection, cancer, and other diseases. It is a healthcare medicine that is used to prevent many diseases in China. In other Asian countries and in European and American countries, BBD is used as a drug to protect the liver. However, a systematic quality study on BBD chemical markers has not been carried out. This study aimed to establish an ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method for the quantitative determination of 43 compounds in BBD. Furthermore, the method was used to further find chemical markers for quality control through the combination with chemometrics. The modified chromatographic conditions were achieved on Waters Cortecs C18 column (2.1 × 100 mm, 1.6 µm) with a gradient elution consisting of 0.1 % formic acid in water and acetonitrile with methanol (1:1, V/V). All analytes were determined in the multiple reaction monitoring mode. The method was validated for linearity, detection limits, precision, repeatability, stability and accuracy. The method was used to analyze the 43 compounds in 11 batches of BBD samples. Hierarchical cluster analysis and principal component analysis were applied to evaluate intrinsic quality of BBD and to identify the potential chemical markers for quality control. In conclusion, the method rapidly and sensitively determined the 43 compounds, among which 10 compounds, namely, N-Gin R1, Gin Re, Gin Rg1, Gin Rb1, GCA, Gin Rd, CA, TCA, CDCA, and DCA, were considered as the potential chemical markers for BBD quality control.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Medicina Tradicional China , Control de Calidad
17.
Biomed Pharmacother ; 137: 111331, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578235

RESUMEN

SCOPE: To investigate the effect of Qingjie Fuzheng Granule (QFG) on lymphangiogenesis and lymphatic metastasis in colorectal cancer. METHODS: The effects of QFG on the expression and secretion of vascular endothelial growth factor-C (VEGF-C) in HCT-116 cells were investigated both in vitro and in vivo. HCT-116 cells were treated with different concentrations (0.2, 0.5, and 1.0 mg/mL) of QFG. The VEGF-C expression level was determined using RT-qPCR and western blotting, and the VEGF-C concentration in supernatant was measured by ELISA. Tumor xenograft models of HCT-116 cells were generated using BALB/c nude mice, and the mice were randomly divided into a control group (gavaged with normal saline) and QFG group (gavaged with 2 g/kg QFG). The effect of QFG on tumor growth was evaluated by comparing the volume and weight of tumors between two groups. Immunohistochemistry (IHC) and RT-qPCR were performed to detect the expression levels of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR-3), and LYVE-1 (lymphatic vessel endothelial hyaluronan receptor 1). ELISA was performed to measure the concentration of serum VEGF-C. TMT proteomics technology and Reactome pathway analysis were used to explore the mechanism of QFG inhibiting lymphangiogenesis in tumor. The VEGF-C (5 ng/mL)-stimulated human lymphatic endothelial cell (HLEC) model was conducted to evaluate the effect of QFG on lymphangiogenesis in vitro. The model cells were treated with different concentrations (0.2, 0.5, and 1.0 mg/mL) of QFG. Cell viability was then determined using an MTT assay. The cell migration, invasion, and tube-formation ability were analyzed using transwell migration, matrigel invasion and tube formation assays, respectively. The underlying mechanism was uncovered, the levels of VEGFR-3, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), p-PI3K/PI3K, p-AKT/AKT and p-mTOR/ mTOR were detected using western blotting. RESULTS: QFG significantly reduced VEGF-C expression and secretion in HCT-116 cells. QFG evidently suppressed in vivo tumor growth and the expression of VEGF-C, VEGFR-3, and LYVE-1. The serum VEGF-C level was also reduced by QFG. Moreover, TMT proteomics technology and Reactome pathway analysis identified 95 differentially expressed protein and multiple enriched pathway about matrix metalloproteinase and extracellular matrix, which is direct associate with lymphangiogenesis. In vitro experiment, QFG inhibited the viability, migration, invasion and tube formation of HLECs. Additionally, QFG reduced the VEGFR-3, MMP-2, MMP-9 expression levels, and the p-PI3K/PI3K, p-AKT/AKT, p-mTOR/ mTOR ratios. CONCLUSION: QFG can exert its effect on both tumor cells and HLECs, exhibiting ani- lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway pathway.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Linfangiogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Células Endoteliales/efectos de los fármacos , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Proteínas de Transporte de Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Oncogénica v-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Factor C de Crecimiento Endotelial Vascular/efectos de los fármacos , Receptor 3 de Factores de Crecimiento Endotelial Vascular/efectos de los fármacos
18.
Anticancer Agents Med Chem ; 21(15): 1987-1995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33438566

RESUMEN

BACKGROUND: Anlotinib is a multi-target tyrosine kinase inhibitor that has been reported to have activity against colorectal cancer. However, the mechanisms of how anlotinib mediates drug-resistance of colorectal cancer have not been fully described. Particularly the potential mechanisms regarding the inhibition of proliferation and induction of apoptosis remain unknown. OBJECTIVE: In this study, we intended to study the effect and related-mechanism of the proliferation, migration, invasion and induced apoptosis of anlotinib overcoming multidrug resistant colorectal cancer cells through in vitro experiments. METHODS: Cell viability was determined by MTT assays and the resistant index was calculated. Colony formation and PI/RNase Staining were used for testing the proliferation of resistant cells. DAPI staining and Annexin V-FITC/PI staining were used to detect cell apoptosis. Migration and invasion were examined by transwell. Protein expression and activation of PI3K/AKT pathway were detected by western blot. LY294002 was used to verify whether anlotinib overcomes the drug-resistance of CRC cells by inactivating the PI3K/AKT pathway. RESULTS: The results showed that the HCT-8/5-FU cells were resistant to multiple chemotherapy drugs (5-FU, ADM and DDP). Anlotinib significantly inhibited cell viability, proliferation, migration, invasion and induced cell apoptosis. Moreover, anlotinib down-regulated the expression of survivin, cyclin D1, CDK4, caspase-3, Bcl-2, MMP-2, MMP-9, vimentin and N-cadherin, but up-regulated cleaved-caspase-3, Bax and E-cadherin and blocked the activity of the PI3K/AKT in HCT-8/5-FU cells. We found anlotinib and LY294002 overcame the drug resistance of HCT-8/5-FU cells by reducing the expression of PI3K/p-AKT. CONCLUSION: Anlotinib inhibited the proliferation, migration, invasion and induced apoptosis of HCT-8/5-FU cells, and the mechanisms may be that anlotinib conquered multidrug resistance of colorectal cancer cells via inactivating of PI3K/AKT pathway.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Indoles/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Quinolinas/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Tumorales Cultivadas
19.
Transl Cancer Res ; 10(2): 953-965, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35116423

RESUMEN

BACKGROUND: To further elucidate the anti-angiogenesis effect of Babao Dan (BBD) in vitro, gastric cancer (GC) cells and human umbilical vein endothelial cells (HUVECs) were used to evaluate the regulation role of BBD by vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathway. METHODS: After induced by VEGFA, GC cells (AGS, MGC80-3 and BGC823) were treated by different concentrations of BBD and then were detected cell viability, migration and VEGFA level. And the anti-angiogenesis effect of BBD was evaluated with HUVECs. To furtherly mimic the tumor microenvironment of angiogenesis, VEGFA as an inducer (10 ng/mL) was used to trigger a cascade of angiogenesis of HUVECs in vitro. RESULTS: The viability and migration of GC cells with VEGFA-induced or non-induced and VEGFA levels in GC cells were significantly inhibited by BBD with concentration-dependent manner (P<0.01). BBD significantly inhibited the HUVECs viability with concentration-dependent manner (P<0.01), which was consistent with the inhibitory action on augmentation of cell viability induced by VEGFA (P<0.01). BBD exhibited the similar inhibitory trend on cyto behavioral variability such as wound repairing (P<0.05), migration (P<0.01) and tube formation (P<0.01) and activation effect on cell apoptosis rate (P<0.01) with VEGFA-induced or non-induced. Moreover, BBD notably regulated the levels of VEGFA, VEGFR2, matrix metalloprotein 2 (MMP2) and matrix metalloprotein 9 (MMP9) of HUVECs on present or absent of VEGFA with dose-dependent manner. CONCLUSIONS: BBD inhibited GC growth against VEGFA-induced angiogenesis of HUVECs by VEGFA/VEGFR2 signaling pathway in vitro.

20.
J Cell Mol Med ; 24(24): 14415-14425, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33155430

RESUMEN

Mini-chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up-regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression-free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase-3 were increased, whereas Bcl-2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.


Asunto(s)
Apoptosis/genética , Biomarcadores de Tumor , Proteínas de Mantenimiento de Minicromosoma/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Pronóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...