Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccine ; 41(1): 109-118, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36404171

RESUMEN

BACKGROUND: Data from previous studies of the MVC-COV1901 vaccine, a subunit vaccine against SARS-CoV-2 based on the stable prefusion spike protein (S-2P) adjuvanted with CpG 1018 adjuvant and aluminum hydroxide, suggest that the vaccine is generally safe and elicits a good immune response in healthy adults and adolescents. By comparing with AZD1222, this study adds to the findings from previous trials and further evaluates the breadth of protection offered by MVC-COV1901. METHODS: In this phase 3, parallel group, randomized, double-blind, active-controlled trial conducted in 2 sites in Paraguay, we assigned adults aged 18-91 years in a 1:1 ratio to receive intramuscular doses of MVC-COV1901 or AZD1222 administered as scheduled in the clinical trial. Serum samples were collected on the day of vaccination and 14 days after the second dose. Primary and secondary safety and immunogenicity endpoints were assessed. In addition, other outcomes investigated were cross-reactive immunity against the Omicron strain and the induction of IgG subclasses. RESULTS: A total of 1,030 participants underwent randomization. Safety data was derived from this set while primary immunogenicity data involved a per-protocol immunogenicity (PPI) subset including 225 participants. Among the participants, 58% are seropositive at baseline. When compared against AZD1222, MVC-COV1901 exhibited superiority in terms of neutralizing antibody titers and non-inferiority in terms of seroconversion rates. Reactogenicity was generally mild and no serious adverse event was attributable to MVC-COV1901. Both vaccines have a Th1-biased response predominated by the production of IgG1 and IgG3 subclasses. Omicron-neutralizing titers were 44.5 times lower compared to wildtype-neutralizing titers among seronegative individuals at baseline. This fold-reduction was 3.0 times among the seropositive. CONCLUSION: Safety and immunogenicity data of MVC-COV1901 from the study in Paraguay confirm previous results. The previous infection coupled with vaccination of this vaccine may offer protection against the Omicron strain though its durability is still unknown.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Adolescente , Humanos , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , ChAdOx1 nCoV-19 , COVID-19/prevención & control , Paraguay , Método Doble Ciego , Inmunoglobulina G , Adyuvantes Inmunológicos , Vacunas de Subunidad , Inmunogenicidad Vacunal , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
NPJ Vaccines ; 7(1): 165, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526640

RESUMEN

Adolescents and children play an important role in SARS-CoV-2 transmission and epidemiology. MVC-COV1901 is a subunit SARS-CoV-2 vaccine based on stabilized spike protein adjuvanted with CpG 1018 and aluminum hydroxide that has received emergency use approval (EUA) for adults in Taiwan. In this study, we have investigated the safety and immunogenicity of two doses of MVC-COV1901 in adolescents. Healthy adolescents from the age of 12-17 years were randomly assigned to receive two intramuscular doses of either MVC-COV1901 or placebo at 28 days apart. Adverse events were mostly mild and were similar in MVC-COV1901 and placebo groups, with the most commonly reported adverse events being pain/tenderness and malaise/fatigue. All immunogenicity endpoints in the adolescent group were non-inferior to the endpoints seen in the young adult and placebo groups. The results here advocate the use of MVC-COV1901 in adolescents in the ongoing efforts to control the pandemic.ClinicalTrials.gov registration: NCT04951388.

3.
PLoS One ; 17(11): e0272594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322572

RESUMEN

With the rapid progress made in the development of vaccines to fight the SARS-CoV-2 pandemic, almost >90% of vaccine candidates under development and a 100% of the licensed vaccines are delivered intramuscularly (IM). While these vaccines are highly efficacious against COVID-19 disease, their efficacy against SARS-CoV-2 infection of upper respiratory tract and transmission is at best temporary. Development of safe and efficacious vaccines that are able to induce robust mucosal and systemic immune responses are needed to control new variants. In this study, we have used our nanoemulsion adjuvant (NE01) to intranasally (IN) deliver stabilized spike protein (S-2P) to induce immunogenicity in mouse and hamster models. Data presented demonstrate the induction of robust immunity in mice resulting in 100% seroconversion and protection against SARS-CoV-2 in a hamster challenge model. There was a significant induction of mucosal immune responses as demonstrated by IgA- and IgG-producing memory B cells in the lungs of animals that received intranasal immunizations compared to an alum adjuvanted intramuscular vaccine. The efficacy of the S-2P/NE01 vaccine was also demonstrated in an intranasal hamster challenge model with SARS-CoV-2 and conferred significant protection against weight loss, lung pathology, and viral clearance from both upper and lower respiratory tract. Our findings demonstrate that intranasal NE01-adjuvanted vaccine promotes protective immunity against SARS-CoV-2 infection and disease through activation of three arms of immune system: humoral, cellular, and mucosal, suggesting that an intranasal SARS-CoV-2 vaccine may play a role in addressing a unique public health problem and unmet medical need.


Asunto(s)
COVID-19 , Inmunidad Mucosa , Ratones , Humanos , Animales , Cricetinae , Vacunas contra la COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Adyuvantes Inmunológicos , Administración Intranasal , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
4.
Sci Rep ; 12(1): 11369, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790783

RESUMEN

Intramuscular vaccines have greatly reduced hospitalization and death due to severe COVID-19. However, most countries are experiencing a resurgence of infection driven predominantly by the Delta and Omicron variants of SARS-CoV-2. In response, booster dosing of COVID-19 vaccines has been implemented in many countries to address waning immunity and reduced protection against the variants. However, intramuscular boosting fails to elicit mucosal immunity and therefore does not solve the problem of persistent viral carriage and transmission, even in patients protected from severe disease. In this study, two doses of stabilized prefusion SARS-CoV-2 spike (S-2P)-based intramuscular vaccine adjuvanted with Alum/CpG1018, MVC-COV1901, were used as a primary vaccination series, followed by an intranasal booster vaccination with nanoemulsion (NE01)-adjuvanted S-2P vaccine in a hamster model to demonstrate immunogenicity and protection from viral challenge. Here we report that this vaccination regimen resulted not only in the induction of robust immunity and protection against weight loss and lung pathology following challenge with SARS-CoV-2, but also led to increased viral clearance from both upper and lower respiratory tracts. Our findings showed that intramuscular MVC-COV1901 vaccine followed by a booster with intranasal NE01-adjuvanted vaccine promotes protective immunity against both viral infection and disease, suggesting that this immunization protocol may offer a solution in addressing a significant, unmet medical need for both the COVID-19 and future pandemics.


Asunto(s)
COVID-19 , Vacunas Virales , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , SARS-CoV-2
5.
J Infect Dis ; 226(9): 1562-1567, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451470

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern negatively impact the effectiveness of vaccines. In this study, we challenge hamsters with the delta variant after 2- or 3-dose inoculations with SARS-CoV-2 vaccines constructed from stabilized prefusion spike proteins (S-2P) of Wuhan (W) and beta (B) variants. Compared to 3 doses of W S-2P, 2 doses of W S-2P followed by a third dose of B S-2P induced the highest neutralizing antibody titer against live SARS-CoV-2 virus and enhanced neutralization of omicron variant pseudovirus. Reduced lung live virus titer and pathology suggested that all vaccination regimens protect hamsters from SARS-CoV-2 delta variant challenge.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Cricetinae , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Theranostics ; 12(1): 1-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34987630

RESUMEN

Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Sitios de Unión , Unión Competitiva , COVID-19/virología , Cricetinae , Microscopía por Crioelectrón , Cristalografía por Rayos X , Perros , Epítopos , Femenino , Humanos , Células de Riñón Canino Madin Darby , Pruebas de Neutralización , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Clin Infect Dis ; 74(11): 1899-1905, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34739037

RESUMEN

BACKGROUND: Variants of concern (VoCs) have the potential to diminish the neutralizing capacity of antibodies elicited by vaccines. MVC-COV1901 is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine consisting of recombinant prefusion stabilized spike protein S-2P adjuvanted with CpG 1018 and aluminum hydroxide. We explored the effectiveness of MVC-COV1901 against the VoCs. METHODS: Serum samples were taken from rats and phase 1 clinical trial human subjects immunized with a low, medium, or high dose of MVC-COV1901. The neutralizing titers of serum antibodies were assayed with pseudoviruses coated with the SARS-CoV-2 spike protein of the wild-type (WT), D614G, Alpha, or Beta variants. RESULTS: Rats vaccinated twice with vaccine containing high doses of antigen retained high levels of neutralization activity against the Beta variant, albeit with a slight reduction compared to WT. After the third dose, neutralizing titers against the Beta variant were noticeably enhanced regardless of the amount of antigen used for immunization. In humans, vaccinated phase 1 subjects still showed appreciable neutralization abilities against the D614G, Alpha, and Beta variants, although neutralizing titers were significantly reduced against the Beta variant. CONCLUSIONS: Two doses of MVC-COV1901 were able to elicit neutralizing antibodies against SARS-CoV-2 variants with an overall tendency of inducing higher immune response at a higher dose level. The neutralizing titers to the Beta variant in rats and humans were lower than those for WT and the Alpha variant. An additional third dose in rats was able to partially compensate for the reduction in neutralization against the Beta variant. We have demonstrated that immunization with MVC-COV1901 was effective against VoCs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Ratas , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Proteínas del Envoltorio Viral
8.
Sci Rep ; 11(1): 8761, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888840

RESUMEN

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , COVID-19/prevención & control , Oligodesoxirribonucleótidos/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Hidróxido de Aluminio/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Línea Celular , Cricetinae , Femenino , Humanos , Inmunización , Inyecciones Intramusculares , Oligodesoxirribonucleótidos/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Carga Viral/efectos de los fármacos
9.
Sci Rep ; 10(1): 20085, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208827

RESUMEN

The COVID-19 pandemic is a worldwide health emergency which calls for an unprecedented race for vaccines and treatment. In developing a COVID-19 vaccine, we applied technology previously used for MERS-CoV to produce a prefusion-stabilized SARS-CoV-2 spike protein, S-2P. To enhance immunogenicity and mitigate the potential vaccine-induced immunopathology, CpG 1018, a Th1-biasing synthetic toll-like receptor 9 (TLR9) agonist was selected as an adjuvant candidate. S-2P in combination with CpG 1018 and aluminum hydroxide (alum) was found to be the most potent immunogen and induced high titer of neutralizing antibodies in sera of immunized mice against pseudotyped lentivirus reporter or live wild-type SARS-CoV-2. In addition, the antibodies elicited were able to cross-neutralize pseudovirus containing the spike protein of the D614G variant, indicating the potential for broad spectrum protection. A marked Th1 dominant response was noted from cytokines secreted by splenocytes of mice immunized with CpG 1018 and alum. No vaccine-related serious adverse effects were found in the dose-ranging study in rats administered single- or two-dose regimens of S-2P combined with CpG 1018 alone or CpG 1018 with alum. These data support continued development of CHO-derived S-2P formulated with CpG 1018 and alum as a candidate vaccine to prevent COVID-19 disease.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/uso terapéutico , Hidróxido de Aluminio/uso terapéutico , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Células CHO , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/uso terapéutico , Cricetinae , Cricetulus , Citocinas/sangre , Citocinas/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Bazo/inmunología , Células TH1/inmunología
10.
J Biomed Sci ; 21: 99, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25407417

RESUMEN

BACKGROUND: Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection. RESULTS: We established H1N1 IAV-infected mouse models using three viruses of varying pathogenicity and noted the accumulation of a defined Gr1 + CD11b + myeloid population correlating with the pathogenicity. Herein, we reported that CCR2+ inflammatory monocytes are the major cell compartments in this population. Of note, impaired clearance of the high pathogenicity virus prolonged IFN expression, leading to CCR2+ inflammatory monocytes amplifying their own recruitment via an interferon-α/ß receptor 1 (IFNAR1)-triggered chemokine loop. Blockage of IFNAR1-triggered signaling or inhibition of viral replication by Oseltamivir significantly suppresses the expression of CCR2 ligands and reduced the influx of CCR2+ inflammatory monocytes. Furthermore, trafficking of CCR2+ inflammatory monocytes from the bone marrow to the lung was evidenced by a CCR2-dependent chemotaxis. Importantly, leukocyte infiltration, cytokine storm and expression of iNOS were significantly reduced in CCR2-/- mice lacking infiltrating CCR2+ inflammatory monocytes, enhancing the survival of the infected mice. CONCLUSIONS: Our results indicated that uncontrolled viral replication leads to excessive production of inflammatory innate immune responses by accumulating CCR2+ inflammatory monocytes, which contribute to the fatal outcomes of high pathogenicity virus infections.


Asunto(s)
Quimiocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/fisiopatología , Infecciones por Orthomyxoviridae/fisiopatología , Receptor de Interferón alfa y beta/genética , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Receptor de Interferón alfa y beta/metabolismo , Receptores CCR2/metabolismo , Índice de Severidad de la Enfermedad , Organismos Libres de Patógenos Específicos , Replicación Viral/efectos de los fármacos
11.
J Immunol ; 174(9): 5583-92, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15843557

RESUMEN

Stimulation of the TCR leads to an oscillatory release of free calcium that activates members of the calcium/calmodulin-dependent protein kinase II (CaMKII) family. The CaMKII molecules have profound and lasting effects on cellular signaling in several cell types, yet the role of CaMKII in T cells is still poorly characterized. In this report we describe a splice variant of CaMKIIbeta, CaMKIIbeta'e, in mouse T cells. We have determined its function, along with that of CaMKIIgamma, by introducing the active and kinase-dead mutants into activated P14 TCR transgenic T cells using retroviral transduction. Active CaMKII enhanced the proliferation and cytotoxic activity of T cells while reducing their IL-2 production. Furthermore, it induced a profound state of unresponsiveness that could be overcome only by prolonged culture in IL-2. These results indicate that members of the CaMKII family play an important role in regulation of CD8 T cell proliferation, cytotoxic effector function, and the response to restimulation.


Asunto(s)
Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Anergia Clonal/inmunología , Activación de Linfocitos/inmunología , Complejos Multienzimáticos/fisiología , Empalme Alternativo , Animales , Antígenos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proliferación Celular , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Anergia Clonal/genética , Citocinas/biosíntesis , Citotoxicidad Inmunológica/genética , Activación Enzimática/genética , Activación Enzimática/inmunología , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/fisiología , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/genética , Transducción Genética
12.
J Immunol ; 173(5): 3250-60, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15322187

RESUMEN

Protein kinase C lambda (PKClambda) is an atypical member of the PKC family of serine/threonine kinases with high similarity to the other atypical family member, PKCzeta. This similarity has made it difficult to determine specific roles for the individual atypical isoforms. Both PKClambda and PKCzeta have been implicated in the signal transduction, initiated by mediators of innate immunity, that culminates in the activation of MAPKs and NF-kappaB. In addition, work from invertebrates shows that atypical PKC molecules play a role in embryo development and cell polarity. To determine the unique functions of PKClambda, mice deficient for PKClambda were generated by gene targeting. The ablation of PKClambda results in abnormalities early in gestation with lethality occurring by embryonic day 9. The role of PKClambda in cytokine-mediated cellular activation was studied by making mouse chimeras from PKClambda-deficient embryonic stem cells and C57BL/6 or Rag2-deficient blastocysts. Cell lines derived from these chimeric animals were then used to dissect the role of PKClambda in cytokine responses. Although the mutant cells exhibited alterations in actin stress fibers and focal adhesions, no other phenotypic differences were noted. Contrary to experiments using dominant interfering forms of PKClambda, mutant cells responded normally to TNF, serum, epidermal growth factor, IL-1, and LPS. In addition, no abnormalities were found in T cell development or T cell activation. These data establish that, in vertebrates, the two disparate functions of atypical PKC molecules have been segregated such that PKCzeta mediates signal transduction of the innate immune system and PKClambda is essential for early embryogenesis.


Asunto(s)
Eliminación de Gen , Isoenzimas/genética , Proteína Quinasa C/genética , Secuencia de Aminoácidos , Animales , Marcación de Gen , Isoenzimas/fisiología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Proteína Quinasa C/deficiencia , Proteína Quinasa C/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre , Linfocitos T/enzimología , Linfocitos T/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
13.
Mol Cell Biol ; 22(14): 5173-81, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12077344

RESUMEN

Macrophage receptors function in pattern recognition for the induction of innate immunity, in cellular communication to mediate the regulation of adaptive immune responses, and in the clearance of some glycosylated cells or glycoproteins from the circulation. They also function in homeostasis by initiating the engulfment of apoptotic cells. Evidence has suggested that macrophage receptors function to recognize cells that are destined for programmed cell death but not yet overtly apoptotic. We have examined the function of a macrophage receptor specific for unsialylated glycoproteins, known as the mouse macrophage galactose- and N-acetylgalactosamine-specific lectin (mMGL) (Ii et al., J. Biol. Chem. 265:11295-11298, 1990; Sato et al., J. Biochem. [Tokyo] 111:331-336, 1992; Yamamoto et al., Biochemistry 33:8159-8166, 1994). With targeted disruption, we tested whether mMGL is necessary for macrophage function, controlled thymic development, the loss of activated CD8 T cells, and the turnover of red blood cells. Evidence indicates that mMGL may play a nonessential role in several of these macrophage functions. Experiments are presented that indicate the existence of another galactose- and N-acetylgalactosamine-recognizing lectin distinct from mMGL. This may explain the absence of a strong phenotype in mMGL-deficient mice.


Asunto(s)
Hematopoyesis/fisiología , Lectinas Tipo C , Lectinas/deficiencia , Proteínas de la Membrana , Animales , Asialoglicoproteínas , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Envejecimiento Eritrocítico , Recuento de Eritrocitos , Eritropoyesis/genética , Eritropoyesis/fisiología , Femenino , Marcación de Gen , Prueba de Complementación Genética , Hematopoyesis/genética , Homeostasis , Lectinas/genética , Lectinas/fisiología , Tejido Linfoide/crecimiento & desarrollo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Sialiltransferasas/fisiología , Distribución Tisular , beta-Galactosida alfa-2,3-Sialiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA